

Lecture Notes in Computer Science 4470
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Qing Wang Dietmar Pfahl
David M. Raffo (Eds.)

Software Process
Dynamics and Agility

International Conference on Software Process, ICSP 2007
Minneapolis, MN, USA, May 19-20, 2007
Proceedings

13

Volume Editors

Qing Wang
Chinese Academy of Science, Institute of Software
No. 4 South Fourth Street, Zhong Guan Cun, Beijing 100080,China
E-mail: wq@itechs.iscas.ac.cn

Dietmar Pfahl
University of Calgary, Schulich School of Engineering
Department of Computer Science & Electrical Engineering
2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
E-mail: dpfahl@ucalgary.ca

David M. Raffo
Portland State University, School of Business Administration
P.O. Box 8491, Portland, OR 97207, USA
E-mail: raffod@pdx.edu

Library of Congress Control Number: 2007925873

CR Subject Classification (1998): D.2, K.6.3, K.6, K.4.3, J.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-72425-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-72425-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12062041 06/3180 5 4 3 2 1 0

Preface

This volume contains papers presented at the International Conference on Software
Process (ICSP 2007) held in Minneapolis, USA, May 19-20, 2007. ICSP 2007 com-
prised two successful series of process-related workshops, the International Workshop
on Software Process Simulation and Modeling (ProSim) and the Software Process
Workshop (SPW).

The theme of ICSP 2007 was “Coping with Software Process Dynamics and Agil-
ity.” Software developers work in a dynamic context of frequently changing tech-
nologies and limited resources. Globally distributed development teams are under
ever-increasing pressure to deliver their products more quickly and with higher levels
of quality. At the same time, global competition is forcing software development
organizations to cut costs by rationalizing processes, outsourcing part or all of their
activities, reusing existing software in new or modified applications and evolving
existing systems to meet new needs, while still minimizing the risk of projects failing
to deliver. To address these difficulties, new or modified processes are emerging,
including agile methods and plan-based product line development. Open source,
COTS and community-developed software are becoming more popular. Outsourcing
coupled with 24/7 development demand well-defined processes to support the co-
ordination of organizationally and geographically separated teams.

The increasing challenges faced by the software industry combine to increase de-
mands on software processes.

ICSP 2007 was a continuation of two successful series of process-related work-
shops, ProSim (Software Process Simulation and Modeling Workshop) and SPW
(Software Process Workshop). SPW and ProSim were conducted jointly for the first
time in 2006 as a co-located event to ICSE 2006. ICSP 2007 continued a long tradi-
tion of software process research, positioning itself as the new leading-edge event for
systems and software process research.

In response to the call for papers, 98 submissions were received from 14 different
countries and regions: Australia, Brazil, Canada, China, France, Germany, Japan,
Korea, The Netherlands, Pakistan, Spain, UK, USA, and Turkey. Every paper was
rigorously reviewed and held to very high quality standards, and finally 28 papers
were accepted as regular papers for presentation at the conference.

The papers were clustered around topics and presented in five regular sessions,
each consisting of two threads. Topics included Process Content, Process Tools and
Metrics, Process Management, Process Representation, Analysis and Modeling, Ex-
perience Report, and Simulation Modeling.

Highlights of the ICSP2007 program were two keynote speeches, delivered by
Larry E. Druffel (President and CEO, SCRA, USA) and Merwan Mehta (Department
of Technology Systems, East Carolina University, USA).

A conference such as this can only succeed as a team effort. All of this work would
not have been possible without the dedication and professional work of many col-
leagues. We wish to express our gratitude to all contributors for submitting papers.
Their work formed the basis for the success of the conference. We would also like to

VI Preface

thank the Program Committee members and reviewers because their work guaranteed
the high quality of the workshop. Particular thanks also go to the keynote speakers for
giving their excellent presentations at the conference. Finally, we would also like to
thank the members of the Steering Committee, Barry Boehm, Mingshu Li, Leon
Osterweil and Wilhelm Schäfer, for their advice, encouragement and support.

We wish to express our thanks to the organizers for their hard work. The confer-
ence was sponsored by the International Software Process Association (ISPA) and the
Institute of Software, the Chinese Academy of Sciences (ISCAS) and the ISCAS
Laboratory for Internet Software Technologies. We also wish to thank the 29th Inter-
national Conference on Software Engineering (ICSE 2007) for sponsoring this meet-
ing as an ICSE Co-located Event. Finally, we acknowledge the editorial support from
Springer for the publication of this volume.

For further information, please visit our Web site at http://www.icsp-
conferences.org/icsp2007.

March 2007 David M. Raffo
Qing Wang

Dietmar Pfahl

International Conference on Software Process 2007

Minneapolis, USA
May 19–20, 2007

General Chair

David M. Raffo, Portland State University, USA

Steering Committee

Barry Boehm, University of Southern California, USA
Mingshu Li, Institute of Software, Chinese Academy of Sciences, China
Leon J. Osterweil, University of Massachusetts, USA
Wihelm Schäfer, University of Paderborn, Germany

Program Co-chairs

Dietmar Pfahl, University of Calgary, Canada
Qing Wang, Institute of Software, Chinese Academy of Sciences, China

Program Committee Members

Stefan Biffl Technische Universität Wien, Austria
Thomas Birkhölzer University of Applied Science, Konstanz, Germany

Keith Chan Hong Kong Polytechnic University, Hong Kong, China

Sorana Cimpan University of Savoie at Annecy, France

Jacky Estublier French National Research Center in Grenoble, France

Anthony Finkelstein University College London, UK

Dennis Goldenson Carnegie Mellon University, USA

Volker Gruhn University of Leipzig, Germany

Paul Grünbacher Johannes Kepler University Linz, Austria

Dan Houston Honeywell, USA

LiGuo Huang University of Southern California, USA

Hajimu Iida Nara Institute of Science and Technology, Japan

Katsuro Inoue Osaka University, Japan

Ross Jeffery University of New South Wales, Australia

Natalia Juristo Universidad Politécnica de Madrid, Spain

Rick Kazman University of Hawaii, USA

Jyrki Kontio Helsinki University of Technology, Finland

VIII Organization

Jian Lv Nanjing University, China

Ray Madachy University of Southern California, USA

Frank Maurer University of Calgary, Canada

Hong Mei Peking University, China

Jürgen Münch University of Kaiserslautern, Germany

Flavio Oquendo University of South Brittany, France

Dewayne E. Perry University of Texas at Austin, USA

Dietmar Pfahl University of Calgary, Canada

Dan Port University of Hawaii, USA

Antony Powell Science Applications International Corporation, USA

David M. Raffo Portland State University, USA

Juan F. Ramil The Open University, UK

Andreas Rausch Technische Universität Kaiserslautern, Germany

Günther Ruhe University of Calgary, Canada

Mercedes Ruiz University of Cádiz, Spain

Ioana Rus Fraunhofer Center, USA

Kevin Ryan University of Limerick, Ireland

Walt Scacchi University of California, Irvine, USA

Barbara Staudt Lerner Mt. Holyoke College, USA

Stan Sutton IBM T. J. Watson Research Center, USA

Colin Tully Middlesex University, UK

Qing Wang Chinese Academy of Sciences, China

Yongji Wang Chinese Academy of Sciences, China

Brian Warboys University of Manchester, UK

Paul Wernick University of Hertfordshire, UK

Laurie Williams North Carolina State University, USA

Ye Yang University of Southern California, USA

Yun Yang Swinburne University of Technology, Australia

External Reviewers

Ahmed Al-Emran University of Calgary, Canada
Marta Lopez Universidad Complutense de Madrid, Spain
Alicia Mon Universidad Nacional de la Matanza, Argentina
Ricardo Imbert Universidad Politecnica de Madrid, Spain
Anna Cecilia Griman Universidad Simón Bolivar, Venezuela
Oscar Dieste Universidad Politecnica de Madrid, Spain
Carmen Zannier University of Calgary, Canada

Table of Contents

Process Content

Extending Microsoft Team Foundation Server Architecture to Support
Collaborative Product Patterns . 1

Fuensanta Medina-Domı́nguez, Maria-Isabel Sanchez-Segura,
Antonio Amescua, and Javier Garćıa

The REMIS Approach for Rationale-Driven Process Model Evolution . . . 12
Alexis Ocampo and Jürgen Münch

On the Measurement of Agility in Software Process 25
Beijun Shen and Dehua Ju

Coping with the Cone of Uncertainty: An Empirical Study of the SAIV
Process Model . 37

Da Yang, Barry Boehm, Ye Yang, Qing Wang, and Mingshu Li

Effects of Architecture and Technical Development Process on
Micro-process . 49

Liming Zhu, Ross Jeffery, Mark Staples, Ming Huo, and Tu Tak Tran

Process Tools and Metrics

Comparative Experiences with Electronic Process Guide Generator
Tools . 61

Monvarath Phongpaibul, Supannika Koolmanojwong,
Alexander Lam, and Barry Boehm

Jasmine: A PSP Supporting Tool . 73
Hyunil Shin, Ho-Jin Choi, and Jongmoon Baik

A Tool to Create Process-Agents for OEC-SPM from Historical Project
Data . 84

Lei Zhang, Qing Wang, Junchao Xiao, Li Ruan, Lizi Xie, and
Mingshu Li

Process Management

Safety Critical Software Process Improvement by Multi-objective
Optimization Algorithms . 96

Mario Brito and John May

Representing Process Variation with a Process Family 109
Borislava I. Simidchieva, Lori A. Clarke, and Leon J. Osterweil

X Table of Contents

An Algebraic Approach for Managing Inconsistencies in Software
Processes . 121

Qiusong Yang, Mingshu Li, Qing Wang, Guowei Yang, Jian Zhai,
Juan Li, Lishan Hou, and Yun Yang

Process Representation, Analysis and Modeling

Cost Estimation and Analysis for Government Contract Pricing in
China . 134

Mei He, Ye Yang, Qing Wang, and Mingshu Li

A Multilateral Negotiation Method for Software Process Modeling 147
Nao Li, Qing Wang, Mingshu Li, Shuanzhu Du, and Junchao Xiao

Distributed Global Development Parametric Cost Modeling 159
Ray Madachy

Process Mining Framework for Software Processes . 169
Vladimir Rubin, Christian W. Günther, Wil M.P. van der Aalst,
Ekkart Kindler, Boudewijn F. van Dongen, and Wilhelm Schäfer

Focused Identification of Process Model Changes . 182
Mart́ın Soto and Jürgen Münch

An Approach for Decentralized Process Modeling . 195
Oktay Turetken and Onur Demirors

Experience Report

A Survey of Software Development with Open Source Components in
Chinese Software Industry . 208

Weibing Chen, Jingyue Li, Jianqiang Ma, Reidar Conradi,
Junzhong Ji, and Chunnian Liu

Empirical Study on Benchmarking Software Development Tasks 221
Li Ruan, Yongji Wang, Qing Wang, Mingshu Li, Yun Yang,
Lizi Xie, Dapeng Liu, Haitao Zeng, Shen Zhang, Junchao Xiao,
Lei Zhang, M.Wasif Nisar, and Jian Dai

An Empirical Study on Establishing Quantitative Management Model
for Testing Process . 233

Qing Wang, Lang Gou, Nan Jiang, Meiru Che, Ronghui Zhang,
Yun Yang, and Mingshu Li

Simulation Modeling

DynaReP: A Discrete Event Simulation Model for Re-planning of
Software Releases . 246

Ahmed Al-Emran, Dietmar Pfahl, and Günther Ruhe

Table of Contents XI

The Economic Impact of Software Process Variations 259
Florian Deissenboeck and Markus Pizka

Deriving a Valid Process Simulation from Real World Experiences 272
Christoph Dickmann, Harald Klein, Thomas Birkhölzer,
Wolfgang Fietz, Jürgen Vaupel, and Ludger Meyer

Project Delay Variability Simulation in Software Product Line
Development . 283

Makoto Nonaka, Liming Zhu, Muhammad Ali Babar, and
Mark Staples

Modeling Risk-Benefit Assumptions in Technology Substitution 295
Antony Powell, John Murdoch, and Nick Tudor

Evaluating the Impact of the QuARS Requirements Analysis Tool
Using Simulation . 307

David M. Raffo, Robert Ferguson, Siri-on Setamanit, and
Bhuricha Deen Sethanandha

A Framework for Adopting Software Process Simulation in CMMI
Organizations . 320

He Zhang, Barbara Kitchenham, and Ross Jeffery

Achieving Software Project Success: A Semi-quantitative Approach 332
He Zhang, Barbara Kitchenham, and Ross Jeffery

Author Index . 345

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 1–11, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Extending Microsoft Team Foundation Server
Architecture to Support Collaborative Product Patterns

Fuensanta Medina-Domínguez, Maria-Isabel Sanchez-Segura, Antonio Amescua,
and Javier García

Computer Science Department, Carlos III Technical University of Madrid
Avda. Universidad, 30, Leganes 28911, Madrid, Spain

{fmedina, misanche, amescua, jgarciag}@inf.uc3m.es

Abstract. This paper provides a practical solution, based on process reuse and
knowledge management techniques, to make software engineering theories
more accessible, easier, and cheaper for software development organizations to
implement. It shows how the PIBOK-PB architecture (Process improvement
based on knowledge-pattern based) and the extensions of a commercial product,
Microsoft solution Visual Studio Team System, are used to achieve this.

Keywords: Software Engineering, Process Management, Reuse, Patterns.

1 Introduction

Software engineering provides enough formalisms to guarantee the execution of a
software project. However, if we look at the data on software projects, we will
observe that, in 1995, on average, only around 20% of software projects were
completed on time and within the budget [1]. What happened to the remaining 80%?
These percentages have changed little since, and many projects still fail to comply
with the triple constraints of scope, time and cost [2]. Poor project management and
insufficient use of software engineering techniques are some of the reasons for this
non-compliance.

This data can help us to understand that although the theories in the software
engineering field are sufficiently matured and are widely known, it is the
implementation of software engineering best practices that helps organizations
improve their productivity, software quality, and reduce costs [3]. But it is very
difficult to implement them because these organizations must first know the theory,
and how to implement them successfully [4] [5] [6], which is not gathered in the
literature. Evidence also reveals that the implementation of software processes in
software development organizations is a complex and expensive process, mainly for
small and medium enterprises [7]. We have focused on bridging the gap between
theory and practice in software development processes and best practices to make
them accessible, and thus beneficial, for small and medium enterprises.

The experience of the American Federal Aviation Administration (FAA) indicates
that knowledge management combines positively with process improvement, benefits
the organization and the process improvement programmes [8]. Some papers, like the
one published in [9], suggest that technology, structure, culture, knowledge process

2 F. Medina-Domínguez et al.

architecture of acquisition, conversion, application, and protection are essential
organizational capabilities or "preconditions" for effective knowledge management.

We believe that knowledge management can be applied to software engineering to
transform software engineering data and information, described as process models,
standards, methodologies, etc., to knowledge and innovation. This is possible once the
knowledge of experts on process model, standards, methodologies, etc., is elicited and
translated into a computable model. Therefore, a software system can make use of this
knowledge in order to reduce the cost of process definitions and hasten the maturity
of the processes.

Data and information must be encapsulated to allow their subsequent recovery and
reuse, and their evolution into knowledge. The artefact to encapsulate this knowledge
is the pattern concept. Patterns are an established and well-known format to capture
engineering knowledge [10], but the real power of patterns to enable knowledge
transfer for practical use is still under development due to the limited number of
approaches that endow patterns with practical implementation. The authors proposed
the product pattern concept as well as a model called PIBOK-PB to support process
improvement based on patterns [11]. In this paper, we describe the architecture that
supports the PIBOK-PB model as well as the Microsoft VSTS extensions to provide a
collaborative practical solution based on process reuse and knowledge management
techniques.

We have no evidence of research groups working on combining software
engineering, patterns, and knowledge management techniques supported by
collaborative working environments. The US Federal Aviation Administration (FAA)
and the SINTEF group (Foundation for Scientific and Industrial Research at the
Norwegian Institute of Technology) are currently working on process improvement
based on knowledge management, but their solutions are not supported by
collaborative working environments.

The remainder of this paper is structured as follows: section 2 describes PIBOK-
PB model architecture; section 3 explains the extensions done to Microsoft VSTS to
satisfy the PIBOK-PB architecture requirements; section 4 summarises related work
and finally section 5 presents the conclusions and future trends.

2 PIBOK-PB Architecture Description

The PIBOK-PB model (Process Improvement Based On Knowledge – Pattern Based
Model) [11] is a knowledge-based software process improvement model that would
allow the use of product patterns as the artefact to encapsulate the knowledge for use
in the development of activities and tasks of the process model chosen.

PIBOK-PB model [11] architecture is made up of four layers, see Fig. 1. These
layers are described below:

• Organization layer: this layer processes the data and characteristics of the
organization and their business processes. It is responsible for obtaining the
data of the organization, for example, the kind and size of the organization,
field of their business processes. In summary, this layer is responsible for
gathering data, provided by the project manager, related to the forces of the
organization.

 Extending Microsoft Team Foundation Server Architecture 3

This layer supports the appropriate selection of process models,
methodologies, etc, for each organization and project, depending on their
features.

• Project instantiation layer: this layer is responsible for obtaining information
related to the project to be developed, for example, the kind of the project, the
paradigm chosen to implement the project, the number of employees and their
roles in this specific project. These data establish the context and forces of the
project to be developed.

This layer allows the instantiation of process models, methodologies, etc.,
in a specific project, so it can be customized.

• Patterns instantiation layer: this layer is responsible for the instantiation of the
product patterns that best fit the activities included in the process model template
selected. The product pattern is an artefact which contains the expert‘s
knowledge to obtain a specific software product. The product pattern concept
is described in more detail later.

This layer allows the recovery of knowledge to be reused in the specific
project under development.

• Collaborative layer: this layer provides a collaborative platform which contributes
to the functionalities and advantages of collaborative environments. It also
provides collaborative functionalities when they are demanded by the roles
involved in the execution of a product pattern or when collaboration among
patterns is required.

Product Patterns
Repository

Developed and
Projects under

execution
Repository

Organization Layer

Project Instantiation Layer

Pattern Instantiation Layer

Collaborative Layer

PIBOK-PB

Product Patterns
Repository

Developed and
Projects under

execution
Repository

Organization Layer

Project Instantiation Layer

Pattern Instantiation Layer

Collaborative Layer

Organization Layer

Project Instantiation Layer

Pattern Instantiation Layer

Collaborative Layer

PIBOK-PB

Fig. 1. PIBOK-PB model architecture

The four layers interact with two repositories:

• A repository of product patterns.
• A repository with the information of previously developed projects and

projects in progress.

The interactions among layers are described below:

• The Organization and Project instantiation layers provide the context and
forces of the organization and project the patterns instantiation layer. Both

4 F. Medina-Domínguez et al.

layers store these data in the repository that contains the information on
developed and current projects. In this way, the patterns instantiation layer will
have enough information to execute the next rule, and find the potential
product patterns to be applied in the activity and/or tasks. Only the problem
field is necessary and this is obtained from the task or activity to be developed
in the process model. When all the data are ready, the patterns instantiation
layer can execute a rule similar to the following:

 If you find yourself in this context
 (and) with this problem
 (and) entailing these forces
 then
 map a product pattern in your project
 (and) look for more product patterns

• The Collaborative layer interacts with the patterns instantiation layer to provide
the collaborative functionalities in order to develop the tasks and/or activities
through product patterns. The collaborative layer also provides the patterns
instantiation layer with the existing collaboration among product patterns.

In order to understand the above rule, the product pattern concept and its fields are
described in detail. Product patterns come from the Alexandrian patterns [12] and are
artefacts that gather the knowledge of software engineering experts to obtain a specific
software product. Product is defined as anything produced during the whole software
development process (for example, Effort and Duration Estimation Using COCOMO II.
Available at: http://sel.inf.uc3m.es/C3/Journals/ProductPattern/ProductPattern.pdf. This
concept was presented in [11]. The fields of product pattern have since been extended
as follows:

• Name: the name can be a word or short phrase related to the product pattern.
• Related Pattern: static or dynamic relationships between this pattern and

others.
• Initial Context: the pre-conditions under which the pattern is applicable - a

description of the initial state before the pattern is applied.
• Result Context: state or configuration of the system after the pattern has been

applied. Describing the positive and negative effects.
• Problem: description of the problem to be solved.
• Forces: restrictions that are classified as follows:

o Kind of organization
o Kind of system to be developed
o Kind of client
o Rationale

• Solution: static relationships and dynamic rules to describe how to achieve the
objective. The solution consists of:

o Process
o Development time
o Activities diagram
o Adjustment degree (very low, low, normal, high very high)

 Extending Microsoft Team Foundation Server Architecture 5

• Roles: people or participants involved.
• Entries: previously obtained products necessary to develop this pattern:

o Name (text)
o Kind of information (.doc, .xml…)
o Is software configuration management going to be applied? Yes/No

• Lessons Learned: documented experiences gathered while using this pattern:
o Name (text)
o Kind of information (.doc, .xml…)
o Hyperlink

• Templates: templates that can be used to obtain the exit of this pattern:
o Name (text)
o Kind of information (.doc, .xml…)

• Examples: one or more sample applications of the pattern
• Exit: product obtained when the pattern is used:

o Name (text)
o Kind of information (.doc, .xml…)
o Is software configuration management going to be applied? Yes/No

• Collaboration: collaboration among product patterns or among roles during
the development of a product pattern.

• Capability Level: maturity level. This is useful when the product pattern
represents a product included in some software improvement approach:

o Name (text)
o Level (text)

• Information Resources: references and documentation (for example, books,
papers) used to develop this product.

3 Extending Microsoft VSTS to Support PIBOK-PB Architecture

In this section we explain the Microsoft VSTS extensions to satisfy the PIBOK-PB
architecture requirements.

The Visual Studio 2005 Team System (VSTS) is Microsoft’s proposal to maximize
the information technology work teams. VSTS provides a set of extensible,
productive and integrated tools, which facilitates communication and collaboration
among teams and individuals in a software organization during the project execution.

VSTS is based on Visual Studio 2005 Professional and is made up of Visual Studio
Team Edition and Visual Studio Team Foundation Server (TFS). Visual Studio 2005
Team Edition is the client and comprises Visual Studio Team Architect Edition,
Visual Studio Team Developer Edition, and Visual Studio Team Test Edition. Visual
Studio Team Foundation (TFS) corresponds to the server side of the application and
offers a set of collaborative capabilities that allow the project manager to coordinate
appropriately the project tasks. (VSTS architecture is shown in Fig. 2.)

VSTS architecture offers a development environment supported by collaborative
services. There are other IDEs (integrated development environments) that offer
similar features, but the authors of this paper selected VSTS because of its philosophy
on the use of development methodologies (by default; MSF for CMMI, MSF Agile).
This feature emphasizes the reuse of software process models and some of the

6 F. Medina-Domínguez et al.

Collaborative P latform

Team Foundation Server

SQL Server

Fig. 2. Visual Studio Team System architecture (source [13])

techniques the proposed process models recommended through the integrated
development environment.

VSTS philosophy will allow the extensions required, which will be part of what we
call PIBOK-PB tool, to satisfy PIBOK-PB architecture requirements. In order to do so,
we had to implement the organizational projects instantiation and pattern instantiation
layers which are not supported by the VSTS. These layers are shaded in Fig. 3.

Next, we enumerate the main requirements of the PIBOK-PB architecture,
identifying how VSTS supports each requirement and the extension developed. These
extensions were developed in Visual Studio 2005 platform and the programming
language was C#.

Organization Layer

Project Instantiation Layer

Pattern Instantiation Layer

Collaborative Layer

PIBOK-PB

Integrated Development
Environment (IDE)

Product Patterns
Repository

Developed and
Projects under

execution
Repository

Organization Layer

Project Instantiation Layer

Pattern Instantiation Layer

Collaborative Layer

Organization Layer

Project Instantiation Layer

Pattern Instantiation Layer

Collaborative Layer

PIBOK-PB

Integrated Development
Environment (IDE)

Product Patterns
Repository

Developed and
Projects under

execution
Repository

Fig. 3. Shaded layers added to the VSTS Architecture

 Extending Microsoft Team Foundation Server Architecture 7

PIBOK-PB architecture requirements

1. to select the process model that best suits each project under development
according to the organization’s features.

a. VSTS support: the tool provides a wizard that allows the selection
of just two process models templates (Agile, and CMMI).

b. VSTS extension (completed): we developed a wizard that answers
the questions related to the organization that is going to develop the
project, and the project itself. The system then selects the process
model template that best fits the project under development.
Therefore, templates are selected according to criteria instead of
randomly as VSTS currently does.

2. to generate an activities tree indicating the precedence among activities once

the process model has been selected, so that the project manager can decide
whether to delete and/or include new activities to be developed.

o VSTS support: the tool provides a static view of the process model
template structure selected; no operation is allowed in this view.

o VSTS extension (completed): we extended the tool to provide a
structure that represents the process model template showing the
precedence among activities. With this tree, these activities can be
executed. Insertion, modification and deletion of activities are
allowed.

3. to choose the product patterns that best fit the project activities for each
process model selected.

o VSTS support: no information is provided to execute the activities
proposed in the selected process model template to date.

o VSTS extension (completed): for each activity included in the
activities tree, the system provides the project manager with the
existing product patterns. The completed extension will allow the
project manager to select the product pattern that best fits each
activity. The tool is also endowed with the capability to do an
automatic matching among product patterns and activities. In order
to associate product patterns with activities, process model
templates and product patterns must be compatible.

4. to create an Active Electronic Process Guide for each Project, once the
process model, and the product patterns to be implemented, are selected.
This guide provides the information needed for each process under
development. The process is executed collaboratively when required.

o VSTS support: the tool provides an Electronic process guide that is
only the web representation of the information included in the
process model template. The information is static; no operation is
allowed.

8 F. Medina-Domínguez et al.

o VSTS extension (completed): we developed an Active electronic
process guide which provides all the information the developer
needs to execute each activity on the spot. This information is
obtained from the product patterns instantiated for each activity.

4 Related Works

Currently, some organizations are customizing and extending VSTS [14]. We have
these describe these extensions below, identifying the enterprise involved as well as
the specific extensions they are focusing on.

Table 1 summarizes the main extensions under development in the field of test.

Table 1. Extensions under development in the field of test

Enterprise Extensions under development
AutomatedQA This enterprise has extended its TestComplete tool with VSTS. The

extension provides developers with a complete and well-integrated
testing solution.

Compuware The integration of VSTS with Compuware Testpartner provides
development access to the same testing assets as testers, allowing
them to resolve errors more quickly, improve communication and
collaboration, and improve application quality in a cost-effective
way.

Mercury
Interactive
Corportaion

This enterprise plans to integrate with VSTS by sharing testing
assets such as unit tests and functional and load tests in both
developments. It will also integrate with regard to collaboration on
the diagnosis and resolution of application defects, performance
bottlenecks, and scalability problems across the entire application
life cycle.

Table 2 summarizes the main extension under development, focusing on version
control.

Table 2. Extensions under development in the field of version control

Enterprise Extensions under development
SourceGear This enterprise is developing a tool called Allerton to access the

Team Foundation Server from outside Visual Studio environments.
This tool allows version control and work item tracking features of
VSTS from other platforms, including Mac Os or Linux.

Table 3 summarizes the main extensions under development, focusing on require-
ments process.

 Extending Microsoft Team Foundation Server Architecture 9

Table 3. Extensions under development in the field of requirements process

Enterprise Extensions under development
Borland This enterprise has a tool called CaliberRM, which provides

requirements management. The extension of this tool would allow
interacting with VSTS, linking life-cycle artefacts with requirements
throughout the application life cycle, and providing end-to-end,
requirements-to-test traceability.

Serena The integration would allow business users to rapidly visualize their
application requirements while collaborating more effectively with
IT architects, developers, and testers.

Table 4 summarizes the main extensions under development in the field of process
templates.

Table 4. Extensions under development in the field of process templates

Enterprise Extensions under development
Cochango This enterprise has Developer, a Scrum methodology template for

VSTS.
Osellus The IRIS tool generates process templates for VSTS as well as

templates for Microsoft Project from the tailored processes. The
IRIS visual modelling environment can be used to model software
development processes, irrespective of the methodology chosen. The
resulting process models are fully compliant with VSTS and can be
enacted across multiple VSTS

Table 5 summarizes the main extension under development in the field of
application maintenance.

Table 5. Extensions under development in the field of test

Enterprise Extensions under development
AVIcode The tool called Intercept Studio integrated with VSTS is going to cut

down on application maintenance and support costs associated with
application maintenance and support by quickly identifying the root
cause of operational problems.

There is an approach which focuses on workflow capabilities; you can see a
summary in Table 6.

Table 6. Extensions under development in the field of workflow

Enterprise Extensions under development
Identify The tool called AppSight with VSTS automates and accelerates the

tasks of application problem resolution. It also adds embedded user
interfaces and new workflow, for all the members of the application
life cycle.

10 F. Medina-Domínguez et al.

There are many enterprises currently extending VSTS; this shows the importance
and possibilities of VSTS extensions. After studying these tools, we can say that
proposed solutions focus on specific processes like testing, version control,
requirements. Our solution is wider in that it covers the whole lifecycle. The use of
patterns in the PIBOK-PB architecture also promotes specific features like reuse, and
emphasizes improving collaborative capabilities to maximize productivity.

5 Conclusions and Future Trends

In this paper, we have described the PIBOK-PB architecture and the extensions to
Microsoft solution Visual Studio Team System in order to provide a solution based on
process reuse and knowledge management techniques. The extensions allow:

• the definition of new process models templates to be selected in order to
develop a software project.

• the selection of process models templates according to a set of rules and
criteria.

• the execution of process models activities following the order determined by
the project manager.

• the recovery of data, information and knowledge from a repository where
product patterns and process models are stored.

• the execution of product patterns associated with project activities, reusing
existing knowledge, and allowing stakeholders access to the information and
knowledge of the product to be obtained on the spot, thus improving the
efficiency of use.

We are currently working on the extension of the catalogue of product patterns
available and the catalogue of process models templates. The product patterns and
process model templates are being stored in a repository XML compatible.

Acknowledgements

This work has been partially funded by the Spanish Ministry of Science and
Technology through the TIC2004-7083 project.

References

1. Standish Group, “CHAOS Report” http://www.standishgroup.com/sample_research/
chaos_1994_1.php

2. Nienaber, R., Cloete, E. A software agent framework for the support of software project
management. (2003). Proceedings of the SAICSIT 2003. Pp 16-23.

3. Capell Peter, PhD. “Benefits of Improvement Efforts”. Special Report CMU/SEI-2004-
SR-010. September, 2004.

4. Iversen Jakob, Ngwenyama Ojelanki. Problems in measuring effectiveness in software
process improvement: A longitudinal study of organizational change at Danske Data.
International Journal of Information Management 26 (2006) 30-43

 Extending Microsoft Team Foundation Server Architecture 11

5. Niazi, Mahmood, Wilson, David, Zowghi Didar. A maturity model for the implementation
of software process improvement: an empirical study. The journal of System and Software
74 (2005) 155-172

6. Arent Jesper, Norbjerg Jacob. Software Process Improvement as Organizational
Knowledge Creation: A Multiple Case Analysis. (2000).

7. Pinto R. and Shoemaker D. “The Cost of CMM in a Conventional IT Organization: A
Field Study”, 2002.

8. Burke, D., Howard, W. Knowledge Management and Process Improvement: A Union of
Two Disciplines. The journal of defense software engineering. Jun 2005. Available at:
http://www.stsc.hill.af.mil/crosstalk/2005/06/0506Burke.html

9. Gold, A., Malhotra, A., and Segars, A. Knowledge Management: An Organizational
Capabilities Perspective. Journal of Management Information Systems. (2001). Vol. 18
No. 1, pp. 185 – 214.

10. Haggen, L. Lappe, K. Sharing requirements engineering experience using patterns. IEEE
software. January-February 2005. Pp 24-31.

11. Amescua, A., García, J., Sánchez-Segura, M., Medina-Domínguez, F. A pattern-Based
Solution to Bridge the gap between theory and practice in Using process models. Lecture
Notes in Computer Science. ISSN0302-9743 Vol. 3966 pp. 97-104. Book Software
Process Change. 2006

12. Alexander, C. “The Timeless Way of Building”. Oxford University Press. 1979.
13. MSDN. http://msdn2.microsoft.com/en-us/teamsystem/default.aspx
14. Hundhausen, R. Working with Microsoft® Visual Studio® 2005 Team System. 2006.

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 12–24, 2007.
© Springer-Verlag Berlin Heidelberg 2007

The REMIS Approach for Rationale-Driven Process
Model Evolution

Alexis Ocampo and Jürgen Münch

Fraunhofer Institute for Experimental Software Engineering, Fraunhofer-Platz 1,
67663 Kaiserslautern, Germany

{ocampo, muench}@iese.fraunhofer.de

Abstract. In dynamic and constantly changing business environments, the need
to rapidly modify and extend the software process arises as an important issue.
Reasons include redistribution of tasks, technology changes, or required
adherence to new standards. Changing processes ad-hoc without considering
the underlying rationales of the process design can lead to various risks.
Therefore, software organizations need suitable mechanisms for storing and
visualizing the rationale behind process model design decisions in order to
optimally introduce future changes into their processes. This paper presents
REMIS (Rationale-driven Evolution and Management Information System), a
prototype tool we have developed for providing support to process engineers
during the task of collecting the reasons for process changes, introducing the
changes, and storing them together in a process model evolution repository.
Additionally, we present lessons learned with REMIS during the evolution of a
reference process model for developing service-oriented applications.

Keywords: Process evolution, rationale, process management, prototype tool,
resource description framework.

1 Introduction

Process models can be used to guide developers, automate and improve processes,
support management and execution, and store experience [8]. Changing these models
in organizations is typically a complex and expensive task [25]. Process engineers are
faced mainly with the following challenges: a) to rapidly update the process model so
that the organization can keep up with its business environment; b) to introduce
changes that are realizable and acceptable for practitioners; c) to introduce changes
that are consistent or do not affect the process model consistency. Achieving a
compromise that satisfies such challenges usually depends on the information
available for rapidly judging if a change is consistent and can be easily adopted by
practitioners. Having information about the rationales of the process design at hand
can be of great help to process engineers for overcoming the previously mentioned
challenges. Currently, the common situation is that there is a lack of support for
systematically evolving process models. Combined with other facts such as budget
and time pres-sure, process engineers often take shortcuts and therefore introduce
unsuitable or inconsistent changes or go through a long, painful update process.

 The REMIS Approach for Rationale-Driven Process Model Evolution 13

It has been shown that systematically describing the relationships between an
existing process and its previous version(s) is very helpful for efficient software
process model evolution [2]. Such relationships should denote differences between
versions due to distinguishable modifications. One can distinguish the purpose of
such modifications if one can understand the rationale behind them.

In the product domain, rationale has been defined as the justification for a decision
by software product designers, who have done extensive research on capturing,
organizing, and analyzing design rationales [9]. By making rationale information
explicit, decision elements such as criteria, priorities, and arguments can improve the
quality of software development decisions. Additionally, once new functionality is
added to a system, the rationale models enable developers to track those decisions that
should be revisited and those alternatives that have already been evaluated.

The situation is not much different in the process modeling domain, where this
topic seems to be less developed, or not yet considered relevant by software process
engineers. We are currently working on transferring rationale concepts into the
process modeling domain. We do this based on the assumption that the rationale for
process changes can be used for understanding the history of software process
changes, for comprehensive learning, and for supporting the systematic evolution of
software processes. The research roadmap we are following consists of the following
steps: a) identification of a taxonomy of reasons for process change (documented in
[26]); b) definition of a structured conceptual model of rationale; c) definition of a
method that provides guidance on how to perform systematic process evolution
supported by rationale; d) implementation of a prototype; e) validation of the concepts
and the approach in process evolution projects. The steps are performed iteratively so
that the experience acquired in the evolution projects can be used for fine tuning the
concepts and the approach.

The research work described in this article consists of the definition of concepts
and the implementation of the REMIS prototype that can be used for collecting
information about the rationale underlying process changes and as tool support for
systematically evolving a software process model. This is one of very few attempts
per-formed so far whose goal is to connect the reasons for changes to the actual
history of a process model. Section 2 presents a retrospective of work performed on
rationale concepts and methods as well as on tools suitable for collecting the rationale
of processes and products. Section 3 presents a characterization of the rationale
support tools. Section 4 presents the current conceptual model. Section 5 describes the
REMIS prototype and its most relevant features. Section 6 presents the experience
and lessons learned from a practical application in industry where we used REMIS.
Section 6 presents a summary and future research work.

2 A Retrospective of Rationale-Driven Approaches and Tools

The design rationale research community has invested much effort into developing
concepts, methods, and techniques for capturing, retrieving, and analyzing the
reasoning behind design decisions. The initiators of the field were Kunz and Rittel
[15], who developed the IBIS method based on the principle that the design process
for complex problems is basically a conversation among stakeholders (e.g., designers,

14 A. Ocampo and J. Münch

customers, implementers). They started looking at the conversational process of
arguing about complex problems during the design of buildings and cities. Each
stakeholder contributed with his experience to the resolution of design issues. This
approach was oriented to promote debate as a mechanism to provide a means for
understanding the other’s view and, in consequence, to obtain a more comprehensive
view of the complex problem. IBIS led the way for approaches such as the Design
Space Analysis proposed by McLean et al. [20] and better known as QOC, the
Procedural Hierarchy of Issues (PHI) approach [22], and the Decision Representation
Language (DRL) [17].

These approaches are called argumentation-based approaches because they focused
on the activity of reasoning about a design problem and its solution [9]. Afterwards,
these argumentation-based approaches were transferred to the mechanical engineering
and software engineering fields and applied to design problems. Tools were
considered an important factor for successfully managing rationale information. Most
tools supporting argumentation-based approaches are hypertext-based systems that
connect all pieces of information through hyperlinks, e.g., gIBIS [7], SYBIL [18], and
the recently developed Compendium [6].

2.1 Software Engineering and Rationale

Dutoit et al. [9] introduce the term Software Engineering Rationale, claiming that this
term is more useful for discussing rationale management in software engineering.
They emphasize that the software development life cycle contains several activities
where important decisions are taken, and where rationale plays an important role. In
software engineering, most approaches have contributed to the rationale domain by
providing new ideas and mechanisms to reduce the risk associated with rationale
capture. Such approaches were conceived having in mind the goal of providing short-
term incentives for those stakeholders who create and use the rationale. For example,
SCRAM [34], an approach for requirements elicitation, integrates rationale into
fictitious scenarios that are presented to users or customers so that they understand the
reason for them and provide extra information. They can immediately see the use and
benefit of rationale. Something similar happens in the inquiry cycle [27], which is an
iterative process whose goal is to allow stakeholders and developers to work together
towards a comprehensive set of requirements.

Most of the approaches developed for Software Engineering Rationale offer tool
support provided as either adaptations or extensions of specific requirements and
development tools, e.g., SEURAT [5], Sysiphus [10], DRIMER [29], or the Win-Win
Negotiation Tool [38]. SEURAT integrates into a development environment a sort of
plug-in for rationale capturing especially enhanced with an ontology of rationale
terms and a rationale checking mechanism that guides developers in efficiently
collecting rationale information and showing them at once the benefits of it. A similar
short-term incentive strategy is adopted by Sysiphus, but in a collaborative modeling
environment. DRIMER [29] is a software development process and tool for applying
design patterns. It provides storage and retrieval of patterns application examples and
their rationale. Designers who are looking for a pattern can better understand how to
use it by looking at the rationale. Finally, the Win-Win negotiation tool, which

 The REMIS Approach for Rationale-Driven Process Model Evolution 15

supports the corresponding model, is an example of rationale as a driver of a software
development project [4]. The set of requirements to be implemented in each iteration
is decided by following the Win-Win model, where issues, i.e., disagreements
between parties, with different win conditions are discussed. Options are proposed
and an agreement is taken. Win conditions are prioritized and scheduled to iterations
based on risks. Other examples of tools are REMAP [31] and C-ReCS [13].

2.2 Process Modeling and Rationale

Little work has been done in other areas apart from design and requirements. One of
them is the process modeling area. Here, the need and value have been identified, and
a couple of research initiatives have been followed with the goal of generating
rationale information from project-specific process models. One approach developed
by Dellen et al. [11] is Como-Kit. Como-Kit allows automatically deducing causal
dependencies from specified process models. Such dependencies could be used for
assessing process model changes. Additionally, Como-Kit provides a mechanism for
adding justifications to a change. The Como-Kit system consists of a modeling
component and a process engine. Como-kit was later integrated with the MVP
approach [3]. The MVP approach consists of the MVP-L language and the MVP-E
system, which supports the modeling and enactment of software processes. The result
of such an integration effort was the Minimally Invasive Long-Term Organizational
Support platform (MILOS) [37], [21]. MILOS enables the modeling of both
algorithmic and creative processes, the collection of data for the purpose of process
guidance, and experience management. Sauer presented a procedure for extracting
information from the MILOS project log and for justifying project development
decisions [33]. According to Sauer, rationale information could be semi-automatically
generated. However, the approach does not capture information about alternatives that
were taken into account for a decision.

Weber et al. [39] introduce an agile process mining framework that supports the
whole process life cycle as well as continuous adaptation to change. The framework
combines three different domains, namely process mining [36], adaptive process
management (PM) [32], and conversational case-based reasoning (CCBR) [39].
Changes are registered in change logs during project execution. Changes can be refer-
enced to cases in a case-base. A case represents a concrete ad-hoc modification of one
or more process instances. A case consists of a textual problem description, a set of
question-answer pairs, and the solution. The process engineer can provide information
on the case so that future analysis for understanding the context of and the reasons for
discrepancies between process models and related instances are possible.

3 Characterization of Rationale Tool Support

Table 1 provides an overview of the diversity of tools implemented for providing
rationale support to a given approach.

16 A. Ocampo and J. Münch

Table 1. Tool Support

Approach Tool/Prototype Support
Category 1

IBIS [15] gIBIS[7], Compendium [6]
Design Space Analysis (QOC) [20] Compendium [6]
The Decision Representation Language (DRL) [17] SYBIL [18]
Inquiry Cycle Potts et al.- [27] Active HyperText Prototype [28]

Category 2
Contribution Structures- Gotel and Finkelstein - [16] Contribution Manager Prototype [16]
Como-Kit [11] Como-Kit System [11]
Agile Process Mining - Weber et al. - [39] ADEPT [32] + CBRFlow [45]

Category 3
Hierarchy of Issues (PHI) [22] JANUS [12], PHIDIAS [23]
REMAP - Ramesh and Dhar- [31] REMAP System [31]
C-ReCS - Klein [13] C-ReCS System [13]
SEURAT- Burge and Brown - [5] SEURAT System [5]
Sysiphus- Dutoit and Paech - [10] Sysiphus [10]
WinWin - Boehm et al.- [4] WinWin Negotiation Tool [38]
DRIMER - Pena-Mora and Vadhavkar - [29] SHARED-DRIMS [29]

These tools can be classified into three major categories: tools that support
debate/argumentation; tools that support editing work and rationale documentation;
and tools that support integrated editing work and debate/argumentation.

Category 1 - Support for debate/argumentation: The main feature of the tools in
this group is to support the collaborative debate of complex problems. Rationale
capture, management, and visualization are important functionalities of these tools.
Visualization is implemented with graphical browsers that connect each rationale
piece of information as hypertext. Usually, these tools provide a linking mechanism to
reference the external artifact being discussed. Examples are: gIBIS [7], SYBIL [18],
Compendium [6], and the Active Hypertext Prototype [28].

Category 2 - Support for editing work and rationale documentation: This group
consists of tools that incorporate rationale as important additional information, but
whose main feature is to provide support for users on the task they are performing.
The front end in these tools is the specialized task editor. Possibilities for capturing,
generating, visualizing, or retrieving rationale information for a given task or task
element are provided. Examples are: Contribution Manager Prototype [16], Como-Kit
System [11], and the integration of ADEPT [32] and CBRFlow [39].

Category 3 - Support for integrated editing work and debate/argumentation: The
main rationale behind these tools is to avoid the criticism of the costs involved with
capturing rationale and its intrusiveness by seamlessly integrating
debate/argumentation into the collaborative work. Usually, these tools provide
mechanisms to easily switch from the task editor to the rationale editor and to
visualize both the task and its rationale in one place. The set of tasks and its rationale
is conceived as a whole and therefore, changes to each task propagate to all users.

 The REMIS Approach for Rationale-Driven Process Model Evolution 17

Some task editors are specialized according to the activity as in the case of
requirements or design, while some others have attempted to provide a more
“generic” task editor. Examples of such tools are: JANUS [12], PHIDIAS [23],
REMAP [31], C-ReCS [13], SEURAT [5], Sysiphus [10], WinWin Negotiation Tool
[38], and SHARED-DRIMS [29].

4 Process Rationale Concepts and Prototype

The following is a conceptual model that can be considered a second version of our
attempt to understand the information needs for capturing the rationale behind process
changes (see Figure 2). The results of our first attempt have been documented in [26].
We decided to start with a small set of concepts that will be refined in time. The
reason for keeping the model as simple as possible comes from the criticism regarding
the high costs of capturing rationale information. We wanted to avoid these high costs
and find those appropriate concepts needed to describe the rationale for process
changes.

4.1 Concepts

We decided to take the basic concepts of the argumentation-based approaches and
connect them to three entities that were relevant for us, i.e., event, changes, and
process element (the non-shadowed classes in Fig 1).

Fig. 1. Rationale Model (UML static structure diagram)

An event is considered to be the trigger of issues. Events can happen inside
(internal) or outside (external) a given organization. Examples of different types of
internal events are: new/updated process engineering technology (e.g., a new process
modeling technique); new/updated regulatory constraints; Examples of different types
of external events are: responses to failures to pass internal or external appraisals,
assessments or reviews (e.g., changes needed to address a failure in passing an FDA
audit); new/updated best practices emerging from "lessons learned" in just-completed
projects (e.g., a new "best practice" approach to handling design reviews).

18 A. Ocampo and J. Münch

Issues are problems that are related to a (part of a) process and that need to be
solved. Issues are stated usually as questions in product-oriented approaches. In this
work, the question has the purpose of forcing process engineers to reason about the
situation they are facing. Additionally, an issue also contains a long description, a
status (open, closed) and a discussion. The discussion is intended for capturing the
emails, memos, letters, etc. where the issue was treated by process engineers.
Additionally, an issue can be categorized by a type. This type can be selected from a
classification of issues that needs to be developed or customized for an organization
[26]. The classification can be used as a basis, which should be refined continuously
based on experience gained from process evolution projects.

Alternatives are proposals for resolving the issue. Alternatives can be captured with
subject (short description) or long descriptions. Alternatives are evaluated and
assessed regarding their impact and viability by process engineers.

Finally, a resolution chooses an alternative whose implementation causes changes
to the process models. At the same time, one resolution could lead to opening more
issues. Note that a resolution has a subject (short description), a long description, and
a justification. The justification is intended for capturing a summary of the analysis of
the different alternatives, the final decision, and the pro-posed changes. Changes are
the result of implementing the decision captured in the resolution. They are performed
on process elements. Some examples of changes performed to process elements are:
activity x has been inserted; artifact y has been deleted; activity x has been moved to
be a sub-activity of activity z.

4.2 Prototype and Technical Infrastructure

This section presents the current state of the REMIS prototype, which we developed
with the goal of supporting our work concerning the systematic evolution of a process
model. It is important to mention that ideas behind REMIS were taken from previous
research work, where we developed an approach for evolving a text-based process
description within the aerospace domain [2]. Our solution relies on the fact that
modern word processing programs increasingly support the Extensible Markup
Language (XML) as a document format [24]. As an open format, XML can be
processed using a variety of widely available tools, including high-level libraries that
can be invoked from most modern programming languages. Using the interpreted,
object-oriented Python programming language [19], we developed a parser that is
able to navigate through the XML-specific version of the ASG process model
description, identifying the section headings and rationale information tables, and
moving information to and from the process evolution repository as necessary. This
functionality allowed us to update a database (i.e., the process evolution repository)
automatically after a set of changes, and to check the data for consistency before
doing any further editing.

We have used the Resource Description Framework (RDF) as a basis for
representing both process and rationale information in the process evolution
repository. In brief, RDF was originally designed for representing metadata about
Web resources, such as the title, author, modification date of a Web page, and
copyright. However, it is possible to generalize the concept of “Web Resource” and
say that RDF can be used to represent “things” that are identifiable. We see the

 The REMIS Approach for Rationale-Driven Process Model Evolution 19

Process element

Process element id

Change description
Event reference

Issue reference

Resolution reference

Process element's
attributes

Fig. 2. Rationale Information Integrated into the Process Model

rationale as metadata about processes. Fig. 2 shows an excerpt of the ASG process
model description as seen by the process engineer. It can be observed that the
document contains a section for rationale information references and a section for the
actual process description of attributes. The actual rationale information can be
documented in special tables at the end of the document. The process engineer can
then introduce the rationale information, perform the changes in the respective parts
of the document, and then establish a reference to the corresponding rationale.

Such metadata can be queried for describing the evolution of processes. RDF’s
conceptual model allows describing ‘things’ by using statements and models such as
nodes and arcs in a graph. We use the RDF/XML syntax [14] for storing and querying
RDF graphs in the database.

Fig. 3 presents the REMIS’ user interface and the main functionality offered. This
functionality supports the method we have designed so far for systematically
changing a process model. Let us assume that the process engineer(s) or person(s)

20 A. Ocampo and J. Münch

Fig. 3. Prototype Tool Support

responsible have identified an issue. Let us assume that the process engineer(s) or
person(s) responsible have identified an issue. First, he/they should extract the current
version from the process evolution repository (step 1 in Fig. 3).

This can be done using the REMIS function, which, given a parameter with the
desired version, generates a word document from the process evolution repository.

The process engineer can document the event, the identified issue, the alternatives
proposed to solve the issue, and the resolution taken (see Fig. 2). Once this is done,
the process engineer can change the process model, and reference the changes to the
just documented rationale. After having performed all changes, he can use the load
functionality from REMIS (step 2 in Fig. 3). Once this is done, the process engineer
can update the process in the process evolution repository with the new changes. He
can do this by using the REMIS functionality that updates the process information and
the corresponding rationale (step 3 in Fig. 3). This functionality is implemented in
such a way that REMIS compares the current version in the repository with the just
loaded and changed version, identifies the changes, and stores the new version with
its corresponding rationale information in the process evolution repository. We have
included as additional functionality the possibility to export the process model or the
rationale information to RDF models. This function was implemented for giving the
user the possibility to visualize the information in RDF-capable tools such as Protegé
[30] or for making queries to the RDF models with languages such as SPARQL [35].

5 Experience and Lessons Learned

The environment where we applied our conceptual model and tool corresponds to the
Adaptive Services Grid (ASG) project [1]. The ASG project was intended to develop

 The REMIS Approach for Rationale-Driven Process Model Evolution 21

a software infrastructure that enables design, implementation, and use of applications
based on adaptive services, namely the ASG platform. We were in charge of defining,
establishing, evaluating, and systematically evolving the development process applied
in the project to develop the platform. Development activities were performed, for
instance, within the ASG project by several teams from different companies,
universities, and research institutes. Development teams ranged from two-person
teams consisting of a PhD student and a master student to ten professional
programmers. Development teams were not collocated and team members spoke
different native languages.

The software process was described in terms of activities, artifacts, roles, and tools,
which are concepts that correspond to process element shown previously in Fig. 1.
The resulting process model includes both textual descriptions and diagrams that
illustrate the relationships between the entities of the model in a graphical way (e.g.,
workflows and role-specific views).

The ASG reference process model was developed mainly in 5 iterations. This
means that there are 5 versions of the model. At certain points in time, we interviewed
developers about the current process model version. Such interviews were taken as a
basis for performing changes to the process model. We discussed the interviews,
decided on the changes, and documented their rationale. Then we proceeded to per-
form the approved changes. These activities were supported by the REMIS prototype.

The final version contained 26 processes, 31 artifacts, 10 roles, and 11 tools. 353
changes to the model were performed in total from version 1 to version 5. These
changes correspond to 15 issues identified from the interviews. The interviews were
designed to elicit from developers important aspects such as the current problems and
improvement suggestions, which could be directly mapped to the issues and
alternatives. One major concern we had was the difficulty involved in first discussing
and then performing the changes to the model. At the beginning, it was hard for us,
acting as process engineers, to get accustomed to this way of work. However, after
having discussed a couple of issues, we felt more comfortable and saw the advantages
of it. REMIS assured that all relationships established in the Word document between
process changes and rationale were kept and stored in the process evolution
repository. REMIS also assured the consistent storage of different versions of the
process model. The information stored in the process evolution repository allowed us
to answer questions such as: Which process elements were affected by a change?
Which process element was affected by the highest number of changes? Which issue
had the largest impact on a process? Which are still unresolved issues? Which type of
issues demand the highest number of changes?

Concerning the visualization, it was important for us that before changing a
process model, we could see previous changes, where they were introduced, and why.
This way, we could better justify our new changes. REMIS supported us by
generating a given version of the process together with its rationale information as a
Word document. Another mechanism to visualize the information was querying the
RDF models exported from the tool, or the RDF models stored in the process
evolution repository. We used internally developed tools for that purpose. We
observed that the amount of information in one visualization graph or table can
become overwhelming and difficult to read. We are currently investigating how to
minimize this problem.

22 A. Ocampo and J. Münch

6 Summary and Outlook

This article presented the current results of our research work towards a systematic
mechanism for rationale supported process evolution. In particular, we described the
REMIS prototype developed for proving our conceptual model.

Despite certain difficulties arising from applying our concepts and prototype for
the first time to a practical, real world project, we consider our results quite
satisfactory. REMIS proved to be suitable for the set of problems at hand, and showed
the potential for being applicable to future similar problems. REMIS helped process
engineers in connecting the reasons for changes to the process model and in
consistently storing both in one place.

We think that our technology choice played a central role for the success of this
initial prototype trial. First of all, being able to produce easily processable XML
documents directly from a standard Word processing application was instrumental to
many of the tasks we performed in the project. On the one hand, using a standard
word processor (as opposed to a specialized process modeling application) not only
made our work easier and more comfortable, but also allowed us to interact with other
stakeholders in a straightforward way. On the other hand, having such documents
readily available in XML form provided us with a wide choice of technologies to
analyze and process the data.

During our work, we identified several open research questions. One of them deals
with the visualization of the large amount of information stored in the process
evolution repository. We are currently investigating mechanisms that facilitate such
visualization, e.g., we are trying to identify a set of “most wanted queries” based on
the special interests of organizations interested in managing process evolution. Such
queries can be deduced from the goals of the organization and reduce the scope of the
information to be analyzed.

Acknowledgments. We would like to thank all ASG project members who
participated in the interviews as well as Sonnhild Namingha from Fraunhofer IESE for
preparing the English editing of this paper. This work was partially supported by the
German Federal Ministry of Education and Research (V-Bench Project, No.01| SE 11 A).

References

1. ASG: Adaptive Services Grid. Integrated Project Supported By the European Commision.
Available at: http://asg-platform.org/cgi-bin/twiki/view/Public

2. Armbrust O, Ocampo A, Soto M. Tracing Process Model Evolution: A Semi-Formal
Process Modeling Approach. In: Oldevik, Jon (Ed.) u.a.: ECMDA Traceability Workshop
(ECMDA-TW) 2005 - Proceedings. Trondheim, 2005, 57-66.

3. Bröckers A, Lott, C.M, Rombach H.D, Verlage M. MVP-L Language Report Version 2.
Technical Report 265/95, Department of Computer Science, University of Kaiserslautern,
Germany, 1995.

4. Bohem B, Egyed A. Kwan J, Port D, Shah A, Madachy R. Using the WinWin Spiral
Model: A Case Study. IEEE Computer, vol 31, no 7, pp 33-44, 1998.

 The REMIS Approach for Rationale-Driven Process Model Evolution 23

5. Burge J, Brown D.C. An Integrated Approach for Software Design Checking Using
Rationale. In: Gero, J (ed) Design Computing and Cognition ’04. Kluwer Academic
Publishers, Netherlands, pp. 557-576, 2004.

6. Compendium Institute. http://www.compendiuminstitute.org/.
7. Conklin J, Begeman M.L. gIBIS: A Hypertext Tool for Exploratory Policy Discussion.

ACM Transactions on Office Information Systems, vol. 6, no. 4, pp. 303-331. 1988.
8. Curtis, B., Kellner, M. I., Over, J. 1992. Process modeling. Commun. ACM 35, 9 (Sep.

1992), 75-90.
9. Dutoit A. (Ed), McCall R. (Ed.), Mistrík I.(Ed.), Paech B. (Ed.). Rationale Management in

Software Engineering. Berlin: Springer-Verlag, 2006.
10. Dutoit A, Paech B. Rationale-Based Use Case Specification. Requirements Engineering

Journal. vol. 7, no 1, pp. 3-19, 2002.
11. Dellen B, Kohler K, Maurer F. Integrating Software Process Models and Design

Rationales. In. Proceedings of 11th Knowledge-Based Software Engineering Conference
(KBSE ’96), Syracuse, NY, pp. 84-93, 1996.

12. Fischer G, Lemke A, McCall R, Morch A. Making Argumentation Serve Design. In
Moran TP, Carroll JM (eds) Design Rationale, Concepts, Techniques and Use, Lawrence
Erlbaum Associates, Mahwah, NJ, 267-294.

13. Klein M. An Exception Handling Approach to Enhancing Consistency, Completeness, and
Correctness in Collabora-tive Requirements Capture. Concurrent Engineering Research
and Applications, vol 5, no 1, pp. 37-46. 1997.

14. Klyne, G., Carroll., J eds.: Resource Description Framework (RDF): Concepts and
Abstract Syntax W3C Recom-mendation 10 February 2004. Available at:
http://www.w3.org/TR/rdf-concepts/

15. Kunz W, Rittel H. Issues as Elements of Information Systems. Working Paper No. 131,
Institut für Grundlagen der Plannung, Universität Stuttgart, Germany, 1970.

16. Gotel O, Finkelstein A. Contribution Structures. In: Proceedings International Symposium
on Requirements Engi-neering, IEEE, York, pp. 100-107, 1995.

17. Lee, J. A Qualitative Decision Management System. In P.H. Winston & S. Shellard (eds.)
Artificial Intelligence at MIT: Expanding Frontiers, Vol.1, pp. 104-133, MIT Press,
Cambridge, MA, 1990.

18. Lee, J. SIBYL: a Tool for Managing Group Design Rationale. In Proceedings of the 1990
ACM Conference on Computer-Supported Cooperative Work (Los Angeles, California,
United States, October 07 - 10, 1990). CSCW '90. ACM Press, New York, NY, 79-92.

19. Lutz, M.: Programming Python (2nd Edition). O'Reilly & Associates, Sebastopol,
California (2001)

20. MacLean A, Young R.M., Belloti V, Moran T. Questions, Options, and Criteria: Elements
of Design Space Analy-sis. Human-Computer Interaction, Vol. 6, pp. 201-250, 1991.

21. Maurer F, Dellen B, Bendeck F, Goldmann S, Holz H, Kötting B, Schaaf, M. Merging
Project Planning and Web-Enabled Dynamic Workflow Technologies. IEEE Internet
Computing (2000), Vol. 4(3), pp.65-74.

22. McCall, R. PHIBIS: Procedural Hierarchical Issue-Based Information Systems.
Proceedings of the Conference on Architecture at the International Congress on Planning
and Design Theory, American Society of Mechanical Engi-neers, NY, pp. 17-22, 1987.

23. McCall R, Bennett P, D’Oronzio P, Oswald J, Shipman F.M, Wallace N. PHIDIAS:
Integrating CAD Graphics into Dynamic Hypertext. In Streitz N, Rizk A, André J (eds),
Hypertext: Concepts, Systems and Applications, Cam-bridge University Press, N.Y, pp.
152-165.

24 A. Ocampo and J. Münch

24. Merz, D.: XML for Word Processors. IBM Developer Works: 25 February 2004.
Available at: http://www-128.ibm.com/developerworks/library/x-matters33/

25. Nejmeh B.A, Riddle W.E. The PERFECT Approach to Experience-based Process
Evolution. Advances in Com-puters, M. Zelkowitz (Ed.), Academic Press, 2006

26. Ocampo A, Münch J.: Process Evolution Supported by Rationale: An Empirical
Investigation of Process Changes. In: SPW/ProSim 2006 - Proceedings. Berlin Springer-
Verlag Lecture Notes in Computer Science 3966, pp.,334-34, 2006.

27. Potts C, Bruns G. Recording the Reasons for Design Decisions. In Proceedings of the 10th
International Conference on Software Engineering (ICSE’10). Los Alamitos, CA, pp.
418-427, 1988.

28. Potts, C. and Takahashi, K. An Active Hypertext Model for System Requirements. In
Proceedings of the 7th interna-tional Workshop on Software Specification and Design
(Redondo Beach, California, December 06 - 07, 1993). IEEE Computer Society Press, Los
Alamitos, CA, pp. 62-68, 1993.

29. Pena-Mora F, Vadhavkar S. Augmenting Design Patterns with Design Rationale. Artificial
Intelligence for Engi-neering Desgin, Analysis, and Manufacturing, vol 11, pp. 93-108,
1996.

30. Protegé: Ontology Editor. 06 January 2006. Available at: http://protege.stanford.edu/
31. Ramesh B, Dhar V. Supporting Systems Development by Capturing Deliberations During

Requirements Engineer-ing. IEEE Transactions on Software Engineering, vol 18, no 6, pp.
498-510, 1992.

32. Reichert M, Dadam P. ADEPTflex - Supporting Dynamic Changes of Workflows Without
Losing Control. Journal of Intelligent Information Systems 10, 93- 29, 1998.

33. Sauer T. Project History and Decision Dependencies. Diploma Thesis. Univer-sity of
Kaiserslautern 2002.

34. Sutcliffe A, Ryan M. Experience with SCRAM, a Scenario Requirements Analysis
Method. In Proceedings of the 3rd International Conference on Requirements Engineering,
Colorado Springs, CO, pp. 164-173, 1998.

35. SPARQL: Query Language for RDF. 06 January 2006. Available at: http://www.w3.org/
TR/ rdf-sparql-query/

36. v.d. Aalst W, van Dongen B, Herbst J, Maruster L, Schimm G, Weijters A: Workflow
mining: A Survey of Issues and Approaches. Data and Knowledge Engineering 27,
237-267 2003.

37. Verlage M, Dellen B, Maurer F, Münch J, A Synthesis of Two Process Support
Approaches, Proceedings of the 8th International Conference on Software Engineering and
Knowledge Engineering (SEKE’96), pp. 59-68, Lake Tahoe, Nevada, USA, June 10-12,
1996.

38. WinWin. The Win Win Spiral Model. Center for Software Engineering University of
Southern California http://sunset.usc.edu/research/WINWIN/winwinspiral.html

39. Weber B, Rinderle S, Wild W, Reichert, M. CCBR–Driven Business Process Evolution.
Int’l Conf. on Case-Based Reasoning (ICCBR’05), pp. 610-624, Chicago, August 2005.

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 25–36, 2007.
© Springer-Verlag Berlin Heidelberg 2007

On the Measurement of Agility in Software Process*

Beijun Shen1 and Dehua Ju2

1 Dept. of Computer Science and Engineering, Shanghai Jiaotong University,
Shanghai 200240, China
bjshen@sjtu.edu.cn

2 Application Solutions & Technologies Inc., Shanghai 200230, China
dh.ju@computer.org

Abstract. Agile software process may become one of the most rational
development patterns in global economic environment to assist software
enterprise to make rapid response to the market. This paper proposes a method
to measure agility in software process using goal-driven techniques and
balanced scorecard. Using this method, we design a set of representative agility
metrics for measuring agility in software process. We also perform one case
study for the proposed agility measurement.

Keywords: Agility, Software Process, Measurement.

1 Introduction and Motivation

As market globalization raises competitive pressures worldwide, one essential
requirement for enterprises’ survival is their inherent ability to meet customer needs
and demands. To meet this challenge, new software development paradigm – agile
software process – was born in time since 1996 [1]. In late 2001, Agile Alliance was
formed and stated their famous manifesto [2]. Until now, agile processes have been
applied successfully at some software enterprises, and all practices indicate they are
effective in some specific domains.

However, we find that there are two myths in the agile process practices in some
Chinese companies:

1) There seems to be a general feeling in the agile community that if you follow all
the practices associated with your chosen method then you are agile in name. While
this may be true for original agile methods, which have defined a set of practices with
emergent properties such that the team becomes more agile as a result of the process,
it is still possible to apply XP or Scrum without gaining much in terms of agility.

2) “Light” is one form of agile. Under the pressure of budget and schedule, in fact,
some organizations have put quite “light” development into practices. They spend a
little efforts and times on estimation, analysis, design, testing and documents, which
looks like implementing agile process imperfectly. On the pretext of various objective
factors, they become weak in promoting communication, simplicity and feedback. At

* This research is supported by the National Natural Science Foundation of China

(No. 60373074).

26 B. Shen and D. Ju

the same time, they have the courage without discipline to take risks of chaotic
management. It is obviously inconsistent with the basic principles of agile process.

How to determine that a software process is really agile? “One size does not fit
all”, so it is impossible that only one agile process template can be suitable for all
projects. Applying in different contexts, scopes or project types, it could result in total
difference in agility of the same software process. Even at this moment there is no
enough data available to prove that agile methods are better than traditional methods.
Although anecdotal evidence suggests that agile methods are more effective at
delivering working solutions, the only practical way of determining whether agile
methods actually make a difference to your software development process is to measure
your own process and to see whether agile methods are actually effective or not.

The question is how to design such measurements and for what we should
measure. In this paper, we propose a goal-driven approach to measure agility in
software process. It combines GQM and balanced scorecard methodologies, and
guides software organizations develop their own set of agility measures in context of
their business goals. After applying the approach to four typical software companies
and further investigation on more organizations, a set of representative agility metrics
are recommended and formalized. These metrics are focused on the main aspects of
customer, financial, internal process, and innovation. Preliminary experiments show
that proposed approach and metrics can help assess organization’s health and
performance systematically, and find existed problems and possible improvement
opportunities.

The rest of the paper is organized as follows: Section 2 illustrates related works. In
section 3, we present a new measurement approach based on GQM and balanced
scorecard. In section 4, a set of representative agility metrics are proposed after
practices and investigation. In section 5, preliminary experiments to evaluate
capability of proposed approach are shown. Finally section 6 presents the conclusions
and future work.

2 Related Works

There have been some attempts at measuring and proving the efficacy of agile
software development methods versus traditional methods. Some of them focus to
demonstrate the benefits of agile methods using traditional software metrics [3][4].
These studies have shown that agile methods are at least as good as traditional
methods. Apparently it is more difficult to gather and analyze metrics in agile
projects, so some people try to propose the lightweight measurement approach [8][9].
However, all this kind of studies adopts traditional software metrics, without
mentioning the agility metrics.

At the same time, agility metric attracts attention from industry and academy.
Williams et al propose an interesting set of agile metrics [5], and Ron Jeffries defines
one agile metric – RTF [6]; but these proposed metrics are not formalized. John
Favaro designs a ROI metric for agile methods from the economic aspect; however he
also suggests using this metric with others [7]. The common disadvantage of these
studies is that they only pay attention to one aspect or one metric of agility, not from a
comprehensive and systematic view.

 On the Measurement of Agility in Software Process 27

There are some of other valuable works we should mention here: Barry Boehm et al
describe a risk-based approach to balance the agility and discipline to develop software
successfully [10]; D. Hartmann and R. Dymond define which agile metrics are
appropriate [18]. Although they do not provide agility metrics, their thoughtful analyses
help us find right way.

Our work differs in that it seeks to define a systematic approach to measure
software process agility at the level of business from the main aspects of customer,
financial, internal process, and innovation. Each software organization could develop
its own set of agility measures in context of its business goals. Using this approach, a
set of representative agility metrics are formalized, which are appropriate and
valuable according to [18] and preliminary experiments.

3 Measurement Approach Based on GQM and Balanced
Scorecard

Many software organizations define measures to reflect the relative maturity and
health of their software processes [11]. These measures help guide an organization’s
overall performance and process improvement effort. Rather than just gather metrics
directly like lines of code, code complexity or quality metrics which have clearly
meanings for the measurement of software systems, agility is very difficult to measure
[18]. It is not usually assessed from technical aspect, but from business performance
goals such as frequent delivery of software. Thus, we try to develop measures and
associated indicators for measuring a software process’s agility based on the
synergistic application of the balanced scorecard and goal-driven measurement
methodologies. Through this iterative approach, a software process’s agility and its
subgoals are mapped to the balanced scorecard and refined. The goal-question-
measurement methodology is then applied to identify indicators and measures for
each scorecard dimension.

3.1 GQM and Balanced Scorecard

Two methodologies often employed to develop origination and process measures are
the balanced scorecard [12] and goal-driven measurement [13] methodologies. Both
methodologies are well known, but usually applied separately. It is suggested to
combine the techniques, taking advantage of the best of each. [14]

1) Balanced scorecard
The balanced scorecard is an industry-recognized best practice for measuring the
health of an organization. It can be used as a management tool for translating an
organization’s mission and strategic goals into a comprehensive set of performance
measures that provide the framework for an enterprise measurement and management
system [12]. It is based on four perspectives of an organization’s performance—
customer, financial, internal process, and learning and growth.

Using the balanced scorecard framework, an organization can systematically set
enterprise strategic goals for each perspective and develop a set of indicators and
measurements for the desired outcomes and performance drivers that will enable the
achievement of the enterprise outcomes. The result is a set of interconnected goals

28 B. Shen and D. Ju

and measurements with defined cause-and-effect relationships. As a template, the
balanced scorecard can be applied to most businesses.

2) GQM
One of the most effective high level models for the application of metrics to the
development process is the Goal-Question-Metric (GQM) paradigm, developed by
Victor Basili for NASA [13]. GQM is nominally a three stage process as the name
implies. Starting from a goal, the method user develops a set of questions which, if
answered, would indicate whether or not the goal had been achieved. Expressing the
questions in a quantifiable form leads to choice of metrics.

The goal-driven measurement process aligns measures and indicators with goals,
thus ensuring that the measures and indicators selected will be used to show success
in achieving these goals.

3.2 New Measurement Approach

Our suggested approach for developing process agility metrics is typically iterative
and contains the following three steps:

Step1: set agility as the strategic goal based on organization mission and vision
Agility in software process is more formally defined as the ability of an enterprise to
respond to continuous and unpredictable changes. It tries to achieve higher
performance through just enough modeling and documentation, without sacrificing
quality. Facing fierce competition, agility has been the most one of strategic goals in
software enterprises, from which the enterprise can derive more detailed subgoals and
activities for achieving its vision.

Step 2: derive subgoals from each quadrant of the balanced scorecard
Agility is purposely at a high level of abstraction, it is necessary to derive subgoals
using the balanced scorecard methodology. The subgoal should have quantitative
expression of achievement, for example, “Increase market share by 15% in the next
fiscal year”. There may be many subgoals derived from each quadrant of the
balanced scorecard. It is beneficial to prioritize these subgoals to develop a
meaningful and efficient strategy for achieving them, rather than trying to achieve
every subgoal. The four quadrants provide the full picture of enterprise, which
inherently linked together.

Step 3: apply GQM to pose relevant questions and determine requisite metrics
GQM method is used to pose relevant questions for each subgoal in each quadrant of
the balanced scorecard. For example, “How do customers evaluate our timeliness?”
from the Customer Perspective. Phrase these questions in a manner that elicits a
quantitative response. Using the answers to these questions, some metrics can be
derived.

Corresponding agility measurement model based on new approach is shown in
Fig.1. This goal-driven approach combines the GQM and Balanced Scorecard
techniques, taking advantage of the best of each.

 On the Measurement of Agility in Software Process 29

Goal: Agility

Financial
subgoals

Customer
subgoals

Internal Process
subgoals

Innovation &
Learning subgoals

Question1 Question2 Question3 Question

Metric1 Metric2 Metric3 Metrics

…

…

Fig. 1. Agility Measurement Model

4 Representative Agility Metrics of Software Process

Agility metrics are difficult to define, mainly due to the multidimensionality and
vagueness of the concept of agility. Applying the above measurement approach, this
section tries to propose a set of representative agility metrics for a “typical” software
organization. Here, typical is defined as an aggregate of several organizations with
similar characteristics.

4.1 Identification of Representative Agility Metrics

We choose four “typical” software organizations in China since 2004 to apply the
proposed measurement approach [15], which are:

− ASTI Co., an independent software development and service provider, located in
Maryland, United States, founded in 1990. ASTI has two foreign wholly-owned
subsidiary companies in Shanghai and Beijing, and one development center in
Xi’an, China. ASTI Shanghai and Beijing with about 120 staff is involved in this
practice.

− Wanshen Co., a software development and system integration company, founded
in 1993. Its software development department with about 30 staff is involved in
this practice.

− Baosteel online Co., an online iron and steel e-commerce service provider in
Shanghai, founded in 2000 by Shanghai Baoshan Iron and Steel Co. Its software
R&D department with about 20 staff is involved in this practice.

− Quality Software Shanghai Co., a Japan software outsourcing company in
Shanghai, founded in 2001. The whole company with about 40 staff is involved in
this practice.

These four companies all consider the agility as one of the most important strategy
goal, and are improving their capability maturity based on ISO9001 or CMMI. The

30 B. Shen and D. Ju

proposed method won't compare one company with others; rather it is a means to
measure relative performance in the same company for the purpose of assessing
process improvement. Based on their own business goal and features, these
companies established their own measurement models at the end of 2004. Although
the derived metrics are not same, there are about eleven common or similar agility
metrics. These eleven metrics are selected and unified, and further questionnaire is
designed to obtain information from more software companies. Based on the
feedback, five representative agility metrics are identified, shown in Table 1. All of
these metrics are considered valuable in more than 65% companies, according to the
questionnaire data.

Table 1. Representative Agility Metrics

Metric Name Quadrant of BSC Brief Description
ROI financial Return on investment

Productivity internal process Relationship between production of an outputs
and the resource inputs used in software
development

Quality customer Quality of product and service
Adaptability customer Ability of adaptation to changes
Innovation learning and growth Ability to innovate, improve, and learn

Although these agility metrics are not complete and also not requisite, they can
help organizations to measure relative performance, and find possible improvement
chances. Also these metrics are lightweight and thus easy to collect.

4.2 Formal Definition of Representative Agility Metrics

Based on a relational system of software development process, the representative
agility metrics are defined in this section.

4.2.1 Measurement Theory Base
From the view of throughput accounting, a software development process, P, can be
conceptualized as a relational system consisting of object-elements, empirical
relations and binary operations that can be performed on the object-elements [16]. By
starting with these definitions, the mathematical role of metrics as a transformation
can be formally outlined. Notationally:

P = (I, O, Ds, Ts, Is)

Where
I (Investment) is the value of process input (i.e. idea).
O (Throughput) is the value of process output (i.e. product).
Ds (Development) are “Do” operations of process, which consist of requirement,
analysis, design, coding, and other operations, defined as D1, D2 …Dn.
Ts (Test) are “Compare” operations of process, which consist of unit test,
integration test, and acceptance test, defined as T1, T2 …Tn.
Is (Iteration) are loops of process.

 On the Measurement of Agility in Software Process 31

Fig. 2 shows a basic system mapping for the software development process. It
simply describes how a single idea is transformed into a product. In the figure,
investment is the sum of money invested in the system of software production plus
the sum spent to obtain the idea; throughput is rate of cash generated through delivery
of product into production; and operational expense is the sum of money spent in the
system to build from idea to product. In particular, “software inventory” (V) is
introduced in this system, which was suggested by Beck in 2002 [17]. The Lean
Software Development paradigm is also closely associated with the analogy to
inventory management [2].

Fig. 2. Software development process

In this relational system, following formulas can be satisfied:

− Investment = ValueInput
− Throughput = ValueOutput = Sales Price - Direct Costs, where Direct Costs are

marginal costs directly associated with the sale of working code. These could
include packaging and delivery, but more likely cover installation, training, and
support.

− Value Added = ValueOutput - ValueInput

4.2.2 Definitions
In the context of the relational system of software process, five representative agility
metrics are defined here.

ROI. The change of focus from cost to value is inherent in the agile paradigm shift.
Here, value is defined as software put into production that can return an investment
over time. The more rapidly high-value software can be rolled out, the quicker value
is realized. Return On Investment (ROI) consists simply of the ratio of profit to the
amount invested:

ROI = Profit/Investment = (Throughput – OperationExpense)/Investment

Productivity. It is a measure of efficiency, which records the relationship between
production of an output and one, some, or all of the resource inputs used in
accomplishing the assigned task. It is usually measured as a ratio of output per unit of
input over time:

Productivity = ValueAdded/Effort = (ValueOutput - ValueInput)/Effort
= (Throughput – Investment)/Effort

32 B. Shen and D. Ju

Quality. Pre-release quality is a surrogate measure of quality. We use both pre-release
defect density and defect removal efficiency as indicators of quality:

Pre-release defect density = Pre-release test defects / KLOC
Defect removal efficiency = Pre-release test defects / (pre-release defects + post-

release defects)
Here, pre-release defects are found before delivery usually through reviews and

testing, not including unit testing.

Adaptability. It is measured as how long it takes a unit of V to pass through the system
from input to output. The unit of V is either a new requirement or a changed requirement.
Apparently, “Adaptability” is not same as the cycle time of project. It indicates how fast a
new request/idea can be turned into working code and delivered to a customer.

Innovation. It focuses on an organization’s ability to innovate, improve, and learn.
Moreover, it is not just having new ideas, but also bringing them to products. It is
measured here as a percent of current year sales due to new products released in the
past three year:

Innovation = ThroughputnewProduct / Throughput *100%

5 Preliminary Experiments

This session summarizes results and findings from the preliminary experiments in
ASTI Co., which is the earliest one of four companies to apply the proposed
measurement approach.

5.1 Planning of the Experiments

As mentioned in section 4.1, ASTI is an independent software vendor, which provides
software solutions and services for oversea and domestic enterprises, including
software tools, enterprise information system development, and software localization.
Like most other companies in the IT business, ASTI faces new challenges that require
changes in the way they develop, deploy and maintain software applications. One of
these challenges is that the pace of business change is increasing. Therefore ASTI
must improve agility to be able to respond to new and changing requirements. In

Table 2. Staged Measurement Approach

No of
Phase

Duration Number of
participants

Number of
projects

Activity
description

Phase 1 Oct. 2004 ~
Dec. 2004

6
(experts and SEPG)

0 Establish agility
measurement model

Phase 2 Jan. 2005 ~
Dec. 2005

48
(ASTI shanghai)

12 Collect data and
measure in ASTI
Shanghai

Phase 3 Jan. 2006 ~
Dec. 2006

120
(ASTI global)

28 Collect data and
measure in ASTI
Global

 On the Measurement of Agility in Software Process 33

order to facilitate this agile shift, ASTI begins to introduce SE practices from agile
methods, including XP and SCRUM. At the same time, we use a staged measurement
approach to implement agility metrics, as shown in table 2.

5.2 Results of the Experiments

There are 40 projects participating in this practice during the latest two years, where
software tool development projects account for 20%, application projects for 55%,
and software localization projects for 25%. Average size of these projects is 19KLOC,
and average duration is 176 days. When the process is enacted, quantitative data is
gathered by project reports as well as by automated data retrieved by the development
environment. Based on the data repository, the agility metrics are calculated, as shown
in table 3 ~ table 8. Here, numerical value in phase 1 stands for performance in 2004.

Table 3. ROI Measurement Result in ASTI

Type of Projects Phase1 Phase2 Phase3
Software tool development 7% 15% 20%
Application development 8% 10% 12%

Software localization 12% 10% 11%
Overall 9% 11% 13.4%

Due to fierier competition, ROI of software localization business in china
decreased more than 30% on average in 2005. It is observed that ASTI performed
better than its competitors.

Table 4. Productivity Measurement Result in ASTI

Type of Projects Phase1 Phase2 Phase3
Software tool development unavailable 0.9KLOC/PM 1.0KLOC/PM
Application development unavailable 1.6KLOC/PM 1.8KLOC/PM
Software localization 34KWORD/PM 36KWORD/PM 35KWORD/PM

Table 5. Quality (Pre-release defect density) Measurement Result in ASTI

Type of Projects Phase1 Phase2 Phase3
Software tool development 8.8/KLOC 8.5/KLOC 8.1/KLOC
Application development 7.5/KLOC 7.3/KLOC 7.3/KLOC
Software localization 1.1/KWORD 1.4/KWORD 1.1/KWORD

Table 6. Quality (Defect removal efficiency) Measurement Result in ASTI

Type of Projects Phase1 Phase2 Phase3
Software tool development unavailable 78% 80%
Application development unavailable 85% 88%
Software localization 90.5% 90% 91%
Overall unavailable 85% 87%

34 B. Shen and D. Ju

Table 7. Adaptability Measurement Result in ASTI

Type of Projects Phase1 Phase2 Phase3
Software tool development unavailable 18 days 17 days
Application development unavailable 12 days 10 days
Software localization unavailable 5 days 6 days
Overall unavailable 10 days 9.5 days

Table 8. Innovation Measurement Result in ASTI

 Phase1 Phase2 Phase3
Innovation 22.3% 22.5% 30.2%

5.3 Findings and Discussion

Although this practice is preliminary, the study has revealed the following findings:

− Measurement itself will inspirit staff to work harder.
− Productivity and quality is lower in software tool development than in application

development, because of complexity.
− It is most difficult to improve agility in software localization, because of regular

works without much innovation.
− Some practices from XP, RUP and other agile methods, such as peer review and

test driven development, reduce the defect density effectively, therefore improve
the productivity.

− Through the agility measurements, possible improvement chances are found in
time, such as lack of architecture design training, inadequate design review and
code walkthrough. And another outcome is that project teams put more attention
on business value, not only technologies.

It is encouraging to observe that after two-year practices “managers are very
surprised to see something running”, experienced engineers emphasize “the real
feedback they get every iteration, the ease of combining inexperienced people in the
project, and the way they are aware of problems almost immediately when they
occur”, younger engineers are satisfied from the direct communication and connection
with the customer and from the process itself. Based on the feedback from customer
questionnaires, the conclusion is that ASTI is moving in the right direction.

We do not compare ASTI with other company, rather measure its relative
performance, and find existed problems and possible improvement chances.

6 Conclusion and Future Work

The agility measurement can be used to make investment decisions and process
improvement. This paper proposes a goal driven method to measure agility in

 On the Measurement of Agility in Software Process 35

software process using GQM and balanced scorecard. Using this method, a set of
representative agility metrics has been identified and defined. We also perform one
case study for the proposed agility measurement.

Currently, we are analyzing other three case studies conducted at Wanshen Co.,
Baosteel online Co., and Quality Software Shanghai Co. The results of this family of
case studies and that of other researchers will build an empirical body of results
concerning agility in various contexts in various organizations. It is also noticed
excitedly that a semipublic data repository has been establishing for software
benchmarking, supported by Shanghai government. Based on this repository, we can
do more case studies, and get more valuable observations. Moreover, we want to
automate our measurement approach to save effort.

References

1. Robert Cecil Martin: Agile Software Development, Principles, Patterns, and Practices.
Prentice Hall (2002)

2. Agile Alliance, http://www.agilealliance.com/
3. John Noll and Darren C. Atkinson: Comparing Extreme Programming to Traditional

Development for Student Projects: A Case Study. In Proceedings of the 4th International
Conference of Extreme Programming and Agile Processes in Software Engineering (2003)

4. Francisco Macias, Mike Holcombe, Marian Gheorghe: A Formal Experiment Comparing
Extreme Programming with Traditional Software Construction. In Proceedings of the
Fourth Mexican International Conference on Computer Science September (2003)

5. Williams, L., Succi, G., Stefanovic, M., Marchesi, M.: A Metric Suite for Evaluating the
Effectiveness of an Agile Methodology. In Extreme Programming Perspectives. Addison
Wesley (2003)

6. Ron Jeffries: A Metric Leading to Agility, http://www.xprogramming.com/xpmag/
jatRtsMetric.htm (2004)

7. John Favaro: Value-based Management and Agile Methods, Proceedings of 4th
International Conference on XP and Agile Methods (2003)

8. Julias Shaw, Jeff Patton: Software Metrics for Agile Projects, Agile International
Conference (2005)

9. Yael Dubinsky, etc.: Agile Metrics at the Israeli Air Force. Proceedings of the Agile
Development Conference (2005)

10. Barry Boehm, Richard Turner: Balancing Agility and Discipline, A Guide for the
Perplexed, Addison Wesley (2004)

11. CMU SEI: Capability Maturity Model® Integration (CMMISM), Version 1.1. CMU/
SEI-2002-TR-003 &CMU/SEI-2002-TR-004 (2002)

12. Kaplan, R. S., Norton, D. P.: The Strategy-Focused Organization, How Balanced
Scorecard Companies Thrive in the New Business Environment. Boston, MA: Harvard
Business School Press (2001)

13. Park, R., Goethert, W., Florac, W.: Goal-Driven Software Measurement—A Guidebook.
CMU/SEI-96-HB-002 (1996)

14. Wolfhart Goethert, Matt Fisher: Deriving Enterprise-Based Measures Using the Balanced
Scorecard and Goal-Driven Measurement Techniques. CMU/SEI-2003-TN-024 (2003)

36 B. Shen and D. Ju

15. Beijun Shen, Dehua Ju: Goal Driven Measurement of Agility in Software Process. In
Proceedings of the 8th International Symposium on Future Software Technology, Japan
(2004)

16. David J. Anderson: Agile Management for software Engineering, Pearson Education
(2004)

17. Beck, K.: Software-in-Process: A New/Old Project Metric, http://groups.yahoo.com/
group/softwareinprocess (2002)

18. Deborah Hartmann, Robin Dymond: Appropriate Agile Measurement: Using Metrics and
Diagnostics to Deliver Business Value, Agile International Conference (2005)

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 37–48, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Coping with the Cone of Uncertainty: An Empirical
Study of the SAIV Process Model*

Da Yang1,3, Barry Boehm2, Ye Yang2, Qing Wang1, and Mingshu Li1

1 Laboratory for Internet Software Technologies, Institute of Software, Chinese Academy of
Sciences, Beijing 100080, China

{yangda,wq,mingshu}@itechs.iscas.ac.cn
2 University of Southern California, 941 w. 37th Place Los Angeles, CA 90089-0781

{boehm, yangy}@sunset.usc.edu
3 Graduate University of Chinese Academy of Sciences, Beijing 100039, China

Abstract. There is large uncertainty with the software cost in the early stages of
software development due to requirement volatility, incomplete understanding
of product domain, reuse opportunities, market change, etc. This makes it an in-
creasingly challenging issue to deliver software on time, within budget, and
with satisfactory quality in the IT field. In this paper, we introduce the Schedule
as Independent Variable (SAIV) approach, and present the empirical study of
how it is used to cope with the uncertainty of cost, and deliver customer satis-
factory products in 8 USC (University of Southern California) projects. We also
investigate the success factors and best practices in managing the uncertainty of
cost.

Keywords: process model, SAIV, cost estimation, cone of uncertainty.

1 Introduction

Cost estimation is the basis for bidding, budgeting, and planning. It may come from
expert intuition, analogy with historical projects, formal parametric cost estimation
models, etc [1]. However, because of the incomplete information about the system
scale or cost drivers, the learning process of the project stakeholders, the requirement
volatility, the market change, etc [2, 3, 4], it is difficult to get accurate cost estimation
at the early stages of a software project. And the uncertainty of cost is a threat to en-
suring the on-time and within-budget delivery of software.

It is illustrated in [5] that the uncertainty ranges of cost estimations present a de-
creasing trend as the software development lifecycle proceeds. This phenomenon is
named as the cone of uncertainty [6, 4, 7].

Kitchenham states in [8] that the uncertainty is an inherent character of cost estima-
tion, the managers do not understand how to use estimates correctly and, in particular,
they usually do not handle properly the uncertainty and risks inherent in estimates.

* This work is supported by the National Natural Science Foundation of China under grant Nos.

60573082 and 60473060; the National Hi-Tech Research and Development Plan of China
under Grant No. 2006AA01Z185; the National Key Technologies R&D Program under Grant
No. 2005BA113A01.

38 D. Yang et al.

Cantor [9] also proposes that the variances in the estimate of schedule and budget are
quite high, and that the reason many projects fail to meet stakeholders’ needs is that
they are managed as if these variances do not exist.

Despite the awareness that coping with the uncertainty of cost is important, there is
a lack of empirical study in the current literature. Here we studied several instru-
mented e-services software projects performed at USC (University of Southern Cali-
fornia) to address how the practitioners can effectively make cost estimation and
handle the uncertainty of cost.

As Brooks states in [10], there is no silver bullet to the success of software project.
We think it is the same with the issue of coping with the cone of uncertainty, and cost
estimation techniques alone can’t solve the problem. Empirical studies on how practi-
tioners handle the uncertainty of cost can give us insights on resolving this problem.

Since 1996, there are about 10 real-client projects every year accomplished by the
students enrolled in the software engineering class at the University of Southern Cali-
fornia. These projects span across broad areas like digital library, e-business, credit
card theft monitoring, etc. The main challenges for these projects are that the devel-
opment teams are required to deliver customer satisfactory products within 24 weeks.
The Schedule as Independent Variable (SAIV) process model [11], an architecture-
based extension of timeboxing, is adopted by these teams, and guides them to consis-
tently deliver on-time, within-budget, and stakeholder satisfactory software products.

In this paper, we will discuss how the project teams make cost estimates, assess the
uncertainty of cost, make project plan, allocate resources and ensure the delivery of
stakeholder-satisfactory products. We use the empirical data to analyze the uncer-
tainty of cost estimations and their influence over the projects. We’ll also discuss the
critical success factors and best practices of these projects.

2 Related Work

Lederer [2] found that requirement changes, users’ lack of understanding of their
requirements, lack of adequate estimation methodology or guidelines, lack of histori-
cal data, etc. can all contribute to the inaccuracy or uncertainty of estimates. Todd
Little presented in [4] that according to the Landmark Inc. data, the uncertainty of
cost estimation remains high until late in project development. He observed a pipe
rather than a cone of uncertainty. As a reply to Little, Gryphon proposed that the Cone
of Uncertainty doesn’t reduce itself, and it may be reduced by the improved estima-
tion methods that become available as the project progresses [7].

Jørgensen asserted that reflecting the underlying uncertainty of cost estimation
would improve the budgeting and planning process. He also proposed several guide-
lines for the assessment of software development cost uncertainty [3]. The COCOMO
II [5] cost estimation model can make the optimistic and pessimistic estimations,
which form the interval of cost and schedule with 90% confidence. Other models such
as SLIM [12], SEER[13], and Knowledge PLAN [14] provide similar capabilities. In
recent years, several probabilistic cost estimation methods also try to assess the uncer-
tainty of cost estimation and use probability distributions to reflect the uncertainty
[15, 16, 17].

Coping with the Cone of Uncertainty: An Empirical Study of the SAIV Process Model 39

Though many researchers have addressed the issue of software development cost
uncertainty, there is still lack of empirical research on how practitioners properly
handle the uncertainty of cost.

In this paper, we will investigate 8 USC software projects, analyze how the uncer-
tainty of cost is handled, and identify the critical success factors. We use the same
uncertainty terminology as described in [3]. The uncertainty is defined in terms of
probability, i.e., the degree of uncertainty of an event is described by the probability
that the event will happen.

3 Backgrounds

This empirical study is based on 8 USC real-client projects, which began in Fall 2005
and completed at the end of Spring 2006 semester. These projects have real world
clients from business companies, governmental organizations, and academic organi-
zations. The software products include: Online Reading Assessment, PubMed Data
Mining, Football Recruiting Database, Code Generator, XML Editing Tool, EBay
Notification System, Rule-based Editor, and Code Count. These projects followed the
SAIV process model, and used the MBASE approach and the Lean-MBASE devel-
opment guideline [19].

The MBASE Model-Based Architecting and Software Engineering [18, 19] is a
process framework and also a process model generator. It uses a set of common an-
chor point milestones [20, 21]: key life-cycle decision points at which a project veri-
fies that it has feasible objectives (LCO: Life Cycle Objectives); a feasible life-cycle
architecture and plan (LCA: Life Cycle Architecture); and a product ready for opera-
tional use (IOC: Initial Operating Capability).

In the USC real-client projects, the top constraint of the success model is that the
teams have to develop the LCA packages in 12 weeks during the Fall semester, and to
develop and transition the IOC packages in 12 weeks during the Spring semester. As a
result of this success model constraint, the SAIV [18] process model is generated
from the MBASE. In SAIV, the schedule becomes the independent variable, and the
lower-priority features become the dependent variable. The SAIV is defined by ex-
plicitly enacting the following six process elements [11]:

• Shared vision and expectations management
• Feature prioritization
• Cost estimation
• Architecture and core capabilities determination
• Incremental development
• Change and progress monitoring and control

4 Empirical Analysis of the SAIV Development Process

In the 8 projects under investigation, the students made cost estimations and detailed
development plans at the LCA milestone. We find the uncertainties of the cost esti-
mates are high. The students, however, didn’t go on making more accurate cost

40 D. Yang et al.

estimations during the later construction phase as suggested in [7]. They have used
the SAIV process to cope with the uncertainties.

We identified, in this empirical study, four success critical factors of coping with
the cone of uncertainty as: estimate cost and its uncertainty, create the opportunities to
handle uncertainty, enable flexible process to cope with uncertainty, and risk driven
strategies for uncertainty mitigation. Fig. 1 shows the four success factors (in rectan-
gle) and the six related SAIV process elements (in ovals).

In this section, we will discuss the four success factors in subsections 4.1-4.4, and
evaluate the project performance in subsection 4.5. In each subsection we will present
the related SAIV process elements.

Feature
prioritization

Shared vision and
expectations
management

Architecture and
core capability
determination

Change&progress
monitoring and

control

Incremental
development

Cost estimation

Coping with the cone
of uncertainty

Estimate cost and its
uncertainty

Risk driven strategies for
uncertainty mitigation

Create the opportunities
to handle uncertainty

Enable flexible process
to cope with uncertainty

Success factors of
coping with the cone of
uncertainty

SAIV process elements

Fig. 1. SAIV elements & Coping with the cone of uncertainty

4.1 Estimate Cost and Its Uncertainty

4.1.1 Cost Estimation
All the 8 projects used COCOMO II for the cost and schedule estimation. As the
students’ projects are smaller and have a shorter schedule than the projects used in
COCOMO II calibration, the students are provided with a new usage guideline based
on past development experiences of USC projects.

The students disregarded COCOMO II schedule estimates and used COCOMO II
effort estimates to determine how large a team is needed for a 12-week fixed sched-
ule. The estimations are based on the following assumptions:

• Assume 12 hours/week of dedicated effort per person
• Assume 10 of the 12 weeks fill COCOMO II Construction phase (72% of total

effort estimate); the final 2 weeks are for product transition into operations.
• Assume 100 hours/person-month for COCOMO estimates

According to the above assumptions, we can derive the following results for the
construction phase of the students’ projects:

− The estimated effort is “COCOMO II person months”*100*0.72.
− The assumed available construction effort is “number of team members”*12*10.
− Number of team members be larger than “COCOMOII person months”/1.67

Coping with the Cone of Uncertainty: An Empirical Study of the SAIV Process Model 41

Table 1 shows the three COCOMO II effort estimations for the construction phase
(Optimistic, Most Likely, and Pessimistic), the number of developers of each team,
and the assumed available construction effort (persons * 12 hoursPerWeek * 10
weeks). The column “Most Likely Effort vs. Available Effort” in Table 1 measures
how much the estimated most likely effort deviates from the assumed available effort:

Most Likely Effort vs. Available Effort = (Most Likely–Available) /Available (1)

Table 1. Cost Estimation

COCOMO II effort Estimations Team
 Optimistic Most Likely Pessimistic

Persons

Available
Effort

Most Likely Effort vs.
Available Effort

Actual
Effort

Relative
Error (RE)

1 475.2 590.4 741.6 5 600 -0.02 1131.50 -0.478
2 540 669.6 842.4 6 720 -0.07 998.42 -0.329
3 403.2 504 633.6 5 600 -0.16 960.83 -0.475
4 576 712.8 892.8 6 720 -0.01 669.67 0.064
5 597.6 741.6 928.8 5 600 0.24 739.17 0.003
6 518.4 640.8 806.4 5 600 0.07 661.67 -0.032
7 554.4 691.2 864 5 600 0.15 467.08 0.480
8 532.8 662.4 835.2 5 600 0.10 607.67 0.090

We can see that the “Most Likely Effort vs. Available Effort” values are small and
below 24%, which means that, according to the COCOMO II cost estimation, in most
cases the students can finish the construction phase on time with around 12
hours/week dedicated effort per person. The stakeholders thus considered the current
system architecture feasible with respect to the schedule and requirements, and com-
mitted to project development.

The cost estimation provides a useful basis to form the shared stakeholder vision
on how many features can be delivered within schedule. The expectation manage-
ment, feature prioritization, and cost estimation can be concurrently conducted.

4.1.2 The Uncertainty of Cost Estimation
The actual effort for construction phase in Table 1 is collected from the students’
daily effort report. The accuracy of cost estimation is measured with relative error:

RE(effortEst) = (Most Likely Effort - Actual Effort) / Actual Effort (2)

While the accuracy of an individual cost estimate can be assessed by comparing it
to actual effort, the individual cost uncertainty assessment has no obvious correspond-
ing actual values. To assess the uncertainty of a series of estimates, however, we can
compare the percentage of confidence level to the proportion of correct assessments
(“Hit rate”) [3]. The following definition of “Hit rate” is based on uncertainty assess-
ments on the cost prediction interval format, e.g., that it is believed to be “90 percent
probable that the actual cost is in the interval [Optimistic cost; Pessimistic cost]”.

∑=
i

ih
n

HitRate
1 ,

⎩
⎨
⎧

<∨>
≤≤

=
iiii

iii
i OptimisticActPessimiticAct

cPessimistiActOptimistic
h

,0

,1
 (3)

We find the actual effort is within the optimistic-pessimistic estimation interval in
4 out of the 8 projects and the HitRate is 50%, lower than the COCOMO II 90%

42 D. Yang et al.

confidence level. That means the actual uncertainty of cost estimation is even higher
than the assessed. Causes for the high uncertainty can be the lack of experience in
cost estimation, uncertainties about COTS or open-source component capabilities, the
learning process of the students, etc. We will discuss in the following sections how
these projects effectively handle the uncertainties.

4.2 Create the Opportunities to Handle Uncertainty

In the SAIV process, the success factor of creating the opportunities to handle uncer-
tainty is related to the process elements: “shared vision and expectations manage-
ment”, “feature prioritization”, and “architecture and core capability determination”.

4.2.1 Shared Vision and Expectations Management
Expectation management holds the key to providing win-win solutions to the stake-
holder negotiation [22]. As described in [23], many software projects lose the oppor-
tunity to assure on-time delivery by inflating client expectations and over promising
on delivered capabilities. The first element in the SAIV process model is to avoid this
by obtaining stakeholder agreement that delivering the system’s Initial Operational
Capability (IOC) is the most critical objective, and that the other objectives such as
the IOC feature content can be variable. The expectation management also provides a
basis for effective system feature prioritization.

4.2.2 Feature Prioritization
For each project, the stakeholders used the USC/GroupSystem.com EasyWinWin
requirements negotiation tool to converge on a mutual satisfactory set of project re-
quirements. In the negotiation results, there are four categories of requirement priority
as “Must have”, “Should have”, “Could have”, and “Want to have”.

Table 2. Feature prioritization and Core capaility

Capability Requirements (CR) Core Capabilities (CC) Team
Must Should Could Want Total

Percentage of
top priority Must Should Could Want Total

CC Total
/CR Total

1 20 14 4 6 44 0.45 20 0 0 0 20 0.45
2 9 3 4 1 17 0.53 8 2 1 1 12 0.71
3 6 2 2 2 12 0.50 5 1 0 0 6 0.50
4 6 2 1 0 9 0.67 4 0 0 0 4 0.44
5 5 2 2 0 9 0.56 3 0 0 0 3 0.33
6 12 0 0 1 13 0.92 12 0 0 0 12 0.92
7 13 0 1 3 17 0.76 13 0 0 0 13 0.76
8 5 5 0 2 12 0.42 5 5 0 0 10 0.83

Table 2 shows the distribution of the capability/functional requirements among
four priority levels. Column “Percentage of top priority” measures the percentage of
the top priority features marked with “Must”, and the average percentage is 60%.

The feature prioritization is vital to be able to establish the core capabilities, which
should be delivered on time even under pessimistic cases.

4.2.3 Architecture and Core Capability Determination
The core capability requirements must be selected so that its features add up to a co-
herent and workable end-to-end operational capability. The core capability should

Coping with the Cone of Uncertainty: An Empirical Study of the SAIV Process Model 43

have at least 90% assurance of being completed in 24 weeks, which means even under
pessimistic COCOMO II estimation the core capability can be completed. The archi-
tecture must also take into account the remaining lower-priority requirements, and
make it easy to add or drop borderline features.

Table 2 shows the number of capability requirements (CR), the core capabilities
(CC), and the percentage of core capability requirements (CC Total / CR Total). We
can see that the core capability usually includes most of the capability requirements
marked with “Must” and some of the capability requirements marked with “Should”.

4.3 Enable Flexible Process to Cope with Uncertainty

This success factor of enabling flexible process is related to the process elements:
“incremental development” and “change and progress monitoring and control”.

4.3.1 Incremental Development
The project teams are required to prepare an incremental development plan at the
LCA milestone. In their project incremental development plan, the construction is to
be completed with two or more iterations. The first iteration will implement the core
capability and the remaining iterations will add the lower-priority features. After the
first iteration there will be a client-operated Core
Capability Drive-Through (the core capability
completion milestone).

Since the core capability has 90 percent assur-
ance of being completed in 24 weeks, this means
that under the pessimistic case of COCOMO II
estimation, the core capability can still be com-
pleted within schedule, sometimes with some
extra effort.

We compare the duration of the first iteration
with that duration of the construction phase, and calculate the percentage as showed
in Table 3. The planned first iteration will take 43%-72% of the construction-phase
duration. To assess the first iteration duration under the pessimistic case, we use the
rate of under-estimate to adjust the planned duration:

pessimistic duration = planned duration * (pessimistic effort / most likely effort) (4)

The pessimistic percentage of the duration for core capability implementation is
between 54% and 91%, that means even under pessimistic case the core capability
can be achieved with 9%-46% construction phase time remaining.

In the most likely (planned) case, however, the project will achieve its core capa-
bility with about 28-57% of the schedule remaining as planned.

Table 3 also shows the actual duration of the first iteration. The relative error (RE)
measures the uncertainty of planned duration for the core capability implementation:

RE(scheduleIter1) = (Planned Duration – Actual Duration) / Actual Duration (5)

Table 3. Percentage of duration for
iteration one

44 D. Yang et al.

4.3.2 Change and Progress Monitoring and Control
There are several major sources of change that may require re-evaluation of the pro-
jects’ plans, such as requirements change, technical difficulties, underestimate of
effort, staffing difficulties, COTS changes, customer or supplier delay, etc. The core
capability completion milestone is a client-operated Core Capability Drive-Through,
which often leads the client to reprioritize the remaining planned features.

The project teams may take many options to accommodate to these challenges.
They may drop or defer lower-priority features, dedicate more time each day in con-
struction, reuse existing software, or add expert personnel. In some cases, the changes
can be accommodated within the existing plans. If not, there is a need to rapidly rene-
gotiate and restructure the plans.

4.4 Risk Driven Strategies for Uncertainty Mitigation

MBASE is a risk-driven process framework, and the SAIV is also a risk driven proc-
ess model [18]. The projects’ monitoring and control activities include:

• Development of a top-N project risk item list that is reviewed and updated weekly
to track progress in managing risks (N is usually between 5 and 10)

• Inclusion of the top-N risk item list in the project’s weekly status report

When the uncertainty is high, the risk management can help the students determine
what to do next and how much is enough, e.g., prototyping, COTS evaluation, archi-
tecting, testing, and business case analysis. The risk management strategies include
Buying Information, Risk Avoidance, Risk Transfers, Risk Reduction, and Risk Ac-
ceptance [24]. Take Team 1 as an example. The team members explained in their
problem report “The lack of GUI prototypes may lead to significant rework at the end
of the project in order to accommodate the clients GUI requirement changes”. The
students were suggested to adopt the Buying Information strategy and construct more
GUI prototypes to mitigate the uncertainty of GUI requirements.

4.5 The Performance of SAIV Process

4.5.1 The Execution of Iteration Plan
Though the total project duration is an independent variable in the SAIV process, the
duration of the first iteration can change to accommodate to the uncertainty of cost or
other changes. When there is under-estimate of effort, the teams can extend the dura-
tion of the core capability development, delay some capabilities to future iterations, or
drop more low-priority features.

The core capability features should be completed by the first iteration according to
the iteration plan. We present in Table 4 the total number of core capabilities (CC
Total), and how many of the core capabilities have been completed in iteration one as
planned. Comparing the total number of completed capabilities and the core capabili-
ties, we get the Completion Rate (Completed Total/CC Total) and Relative Error:

RE(capabilityIter1) = (CC Total – Completed Total) / Completed Total (6)

Coping with the Cone of Uncertainty: An Empirical Study of the SAIV Process Model 45

Table 4. Core capability requirements completed in iteration one

Completed in Iteration One Team CC Total
Must Should Could Want Total

Completion Rate
(Completed Total / CC Total)

RE

1 20 19 0 0 0 19 0.95 0.053
2 12 8 2 0 1 11 0.92 0.091
3 6 4 1 0 0 5 0.83 0.200
4 4 4 0 0 0 4 1.00 0.000
5 3 4 0 0 0 4 1.33 -0.250
6 12 7 0 0 0 7 0.58 0.714
7 13 13 0 0 0 13 1.00 0.000
8 10 4 5 0 0 9 0.90 0.111

Fig. 2 shows the uncertainties using
boxplot [25], which simultaneously dis-
plays the median, the inter-quartile
range, and the smallest and largest values
for each group. We find the magnitude of
relative error of iteration duration or core
capability implementation is much
smaller than that of effort estimation.

We use the Pearson’s correlation
analysis [25] to reflect the correlation
between the inaccuracy of cost estima-
tion and the deviations of iteration plan
execution. Cohen and Holliday [26] suggest the following rule of thumb to interpret
the Pearson’s coefficient: 0.19 and below is very low correlation; 0.20 to 0.39 is low
correlation; 0.40 to 0.69 is modest correlation; 0.70 to 0.89 is high correlation; and
0.90 to 1 is very high correlation.

 Table 5. Correlations among the relative errors

Table 5. shows that there is no
significant correlation among
the inaccuracy of effort estima-
tion and the deviations of itera-

tion plan execution (change in duration or
capabilities implemented).

We find that the completion rate of
core capability in the first iteration has
significant negative correlation with the
percentage of core capability require-
ments.

The linear regression in Fig. 3 graphi-
cally shows the correlation between the
core capability completion rate in the first
iteration and the percentage of core capa-
bility requirements. The relation shows,
when high percentage of capability

Pearson’s Coef. RE
(effortEst)

RE
(scheduleIter1)

RE
(capabilityIter1)

RE(effortEst) 1 .208 -.137
RE(scheduleIter1) .208 1 .328
RE(capabilityIter1) -.137 .328 1

Fig. 2. The uncertainty of cost estimation,
iteration1 duration, and iteration1 capability
implementation

Fig. 3. Linear Regresssion

46 D. Yang et al.

requirements are assigned as core capability, it may become more difficulty to com-
plete the core capability in the first iteration as planned.

An extremely high percentage of core capabilities also indicates that there may be
some problems with the stakeholder expectations management or requirement priori-
tization, e.g., the high percentage of 92% in the case of Team 6. This team only com-
pleted 58% of the core capability requirements in the first iteration, which was the
lowest completion rate among the 8 teams. The team members explained in the itera-
tion review report that the clients required all the requirements to be implemented as
core capability and it resulted in a lot of confusion amongst the team members. The
students also proposed “This problem would not have arisen, if all the team members
were more in touch with the distant client’s need”.

By analyzing how well the 8 projects executed their iteration plan, we find that:

• Even though the uncertainties of cost are high, the project plans have very small
magnitude of uncertainty.

• There is no significant correlation between the inaccuracy of cost estimation and
the error in iteration plan execution.

• The completion rate of core capability in the first iteration is well correlated to the
percentage of core capabilities.

• The stakeholder expectations management and requirement prioritization are im-
portant for establishing a feasible project plan.

4.5.2 Clients’ Evaluation of Projects
At the end of the project, the clients evaluated the delivered product with regards to
five categories of criteria, which are documentation, team interaction, system prepara-
tion and testing, implementation, and overall value. The full grade is 20, and Table 6
shows the clients are satisfied with the development process and the delivered prod-
ucts. The product deliveries received high evaluations as every team finally
implemented all the core capabilities and the planned lower-priority features.

 Table 6. Client evaluation Table 7. Correlation analysis for client evaluation

The correlation analysis in Table. 7 shows that the stakeholder satisfaction corre-
lates neither to the uncertainty of cost nor the dedicated effort by the team members.
The customers’ concern is not an accurate cost estimation or the dedicated develop-
ment effort, but receiving their desired system capabilities within schedule.

Coping with the Cone of Uncertainty: An Empirical Study of the SAIV Process Model 47

5 Conclusions

We find in this empirical study that even though the uncertainty of cost is high, which
may be due to the limited experience of cost estimation, the steep learning curve,
reuse uncertainties, etc., the students can successfully deliver product on time with
satisfactory quality. The project teams can accommodate to changes and complete the
core capability iteration with 24%- 46% construction-phase time remaining. In addi-
tion, all the core capability features and planned lower-priority features are com-
pleted. The clients are satisfied with the development process and product delivery,
and their satisfaction doesn’t correlate to the uncertainty of cost or the dedicated de-
velopment effort.

The SAIV process plays a critical role in coping with the cone of uncertainty by:
estimating the cost and its uncertainty, creating opportunities to handle the uncer-
tainty, enabling flexible process, and providing risk driven uncertainty mitigation
strategies.

The critical practices for the 8 projects are:

• Win-Win stakeholders negotiation and effective expectation management
• Getting clients to develop and maintain prioritized requirements
• Establishing the core capability and architecting the system for ease of adding and

dropping features
• Planning development increments and ensuring the on-time delivery of core capa-

bility even under pessimistic cases
• Risk driven progress monitoring and corrective action

To cope with uncertainty, agile methods also offer useful practices, e.g., embracing
change, fast cycle / frequent delivery, simple design, and refactoring, and the plan-
driven methods offer practices like requirements management, quantitative process
management, project tracking and oversight [27]. The SAIV process is a balance of
agility and discipline. Its usage on USC projects over the last 10 years and other re-
search works [18, 28] indicate that the key practices introduced in this case study are
applicable to a wide spectrum of software projects. Practitioners should choose ap-
propriate practices to cope with the cone of uncertainty according to their develop-
ment environment, and they can use risk, spiral model anchor point, Results Chain,
etc. to balance the agility and discipline [27].

Managing the uncertainty of cost is an on going research, and our future work
includes:

• Compare the current practices of coping with the cone of uncertainty, and provide
more general guidelines.

• Investigate the sources of cost uncertainty and improve the current cost uncertainty
assessment method.

• Provide tools to analyze the information of cost uncertainty, make feasibility analy-
sis with given constraints or dependencies, and facilitate the stakeholder win-win
negotiation and project planning.

48 D. Yang et al.

References

1. Boehm B., Abts C., and Chulani S., Software Development Cost Estimation Approaches—
A Survey, Annals of Software Engineering, Vol. 10, (2000) 177-205

2. Lederer A.L., and Prasad J., Nine Management Guidelines for Better Cost Estimating,
Communications of the ACM, Vol. 35(2), Feb. (1992) 51 - 59

3. Jørgensen M., Evidence-Based Guidelines for Assessment of Software Development Cost
Uncertainty, IEEE Transactions on Software Engineering, Vol. 31(11) (2005)

4. Little T., and Graphics L., Schedule Estimation and Uncertainty Surrounding the Cone of
Uncertainty, IEEE Software, May/June (2006)

5. Boehm B., et al, Software Cost Estimation with COCOMO II, Prentice Hall (2000)
6. McConnell, S., Rapid Development: Taming Wild Software Schedules, Microsoft Press,

(1996)
7. Gryphon S., Kruchten P., McConnell S., and Little T., Letters: The Cone of Uncertainty,

IEEE Software, Vol. 23 (5), September/October (2006) 8-10
8. Kitchenham B., Linkman S., “Estimates, Uncertainty, and Risk”, Software, May (1997)
9. Cantor M., Estimation Variance and Governance,

 http://www-128.ibm.com/developerworks/rational/library/mar06/cantor/
10. Brooks F.P., The Mythical Man-Month, Addison-Wesley Publishing Co., (1995)
11. Boehm, B., and Brown W.. “Mastering Rapid Delivery and Change with the SAIV Process

Model,” Proceedings, ESCOM2001, Apr. 2001.
12. Putnam, L., Software Life Cycle Model (SLIM), QSM, (2001) http://www.qsm.com
13. Galorath, D., SEER-SEM, Galorath, Inc., (2001) http://www.galorath.com
14. Jones, C., Knowledge PLAN, Artemis/SPR, (2001), http://www.spr.com
15. Briand L.C., Emam K., and Bomarius F., “COBRA: A Hybrid Method for Software Cost

Estimation, Benchmarking, and Risk Assessment”, Proceedings of the 20th international
conference on Software engineering, IEEE CS Press, Washington DC, (1998) 390-399

16. Pendharkar P.C., Subramanian G.H., and Rodger J.A., “A Probabilistic Model for predict-
ing software development Effort”, IEEE Transactions on Software Engineering, IEEE
Press, Piscataway, NJ, July 2005, pp. 615-624.

17. Yang D., et al, “COCOMO-U: An Extension of COCOMO II for Cost Estimation with
Uncertainty”, Proceedings of International Software Process Workshop and International
Workshop on Software Process Simulation and Modeling, 2006, pp.132-141.

18. Boehm B., Port D., Huang L.G., Brown W., Using the Spiral Model and MBASE to Gener-
ate New Acquisition Process Models, SAIV, CAIV, and SCQAIV, Cross Talk, Jan. (2002)

19. Boehm W., and et al, Guidelines for Lean Model-Based Architecting and Software Engi-
neering (Lean MBASE), http://greenbay.usc.edu/csci577/spring2006/site/guidelines/
LeanMBASE_Guidelines_V1.5.pdf

20. Boehm, B., Anchoring the Software Process, IEEE Software, Jul. (1996) 73-82
21. Royce W.E., Software Project Management: A Unified Framework, Addison-Wesley, (1998)
22. Boehm B., The Art of Expectations Management, Computer, Jan. (2000)
23. Yourdon E., Death March, Prentice Hall, (1997)
24. Boehm, B., Software Risk Management, IEEE Computer Society Press, 1989
25. Bryman A., and Cramer D., Quantitative Data Analysis with SPSS, Routledge, (2005)
26. Cohen L., and Holliday M., Statistics for Social Scientists, London:Harper & Row, (1982)
27. Boehm, B. and Turner, R., Balancing Agility and Discipline: A Guide for the Perplexed,

Addison-Wesley Professional, (2003)
28. Boehm, B. Port, D. and Jain, A., Achieving CMMI Level 5 Improvements with MBASE

and the CeBASE Method, Cross Talk, May. (2002)

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 49–60, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Effects of Architecture and Technical Development
Process on Micro-process

Liming Zhu, Ross Jeffery, Mark Staples, Ming Huo, and Tu Tak Tran

NICTA, Australian Technology Park, Eveleigh, NSW, Australia
School of Computer Science and Engineering, University of New South Wales, Australia

{Liming.Zhu, Ross.Jeffery, Mark.Staples, Ming.Huo,
TuTak.Tran}@nicta.com.au

Abstract. Current software development methodologies (such as agile and
RUP) are largely management-centred, macro-process life-cycle models.
While they may include some fine-grained micro-process development
practices, they usually provide little concrete guidance on appropriate micro-
process level day-to-day development activities. The major factors that affect
such micro-process activities are not well understood. We propose that
software architecture and technical development processes are two major
factors. We describe how these two factors affect micro-process activities.
We validate our claim by mining micro-processes from two commercial
projects and investigating relationships with software architecture and
technical development processes.

Keywords: micro-process, macro-process, architecture, process mining.

1 Introduction

The increasing demands imposed on software-intensive systems require more
rigorous engineering and management of integration among the products being
developed, the technology being used and software development processes [8, 16].

In process engineering, a macro-process describes the high-level behaviours of
process while micro-process describes the fine-grained internal workings of processes
[15]. Current software development methodologies (such as Agile and RUP) are
largely project management-centred, macro-process life cycle models. While they
may include some fine-grained micro-process development practices, they usually
provide little concrete guidance on appropriate micro-process level day-to-day
development activities. This has hindered the wide adoption of rigorous development
processes by developers because they do not usually find macro-processes useful for
their immediate needs at a micro-level. This gap between macro-processes and micro-
processes has been recognized previously [15], [13]. In this paper, we suggest that
software architecture and technical development are two major factors that affect
fine-grained micro-processes:

1) Software architecture is important for decomposing a system into functional
modules. This can be used to support task allocation when planning development.

50 L. Zhu et al.

However, architecture has other influences on development. We observe that module
dependency, degree of such dependency, and architectural refactoring play major
roles for micro-processes.

2) A technical development process is a development process for a particular
technology, such as XML, service orientation, object orientation or a programming
language. Technical development processes are composed of technical steps, best
practices, and checklists for different types of technology-specific components at
different stages. However, these are not necessary aligned with the normal phases of
software development or project iterations. Companies consider technical
development processes an important addition to their macro-process, bringing
competitive advantage [10]. Some technologies, such as programming languages and
object orientation, have not been considered to have a major impact on the normal
flow of a development process, but have rather been associated with development
efficiency and product quality. We observe that some new technologies, such as XML
and service orientation, do have major effects on the development process. This is
largely because such technologies are not confined to the design and implementation
phases. XML has been used to directly define business level requirements and
communication standards. Service governance has become a normal business activity,
since it gives direct control over service development beyond the phases of initial
development.

We have conducted micro-level process mining in two commercial projects. After
excluding the “normal” micro-process activities, such as detailed designing,
implementing, testing a single module, integration and system testing of a particular
sub-system, we find most of the micro-processes and activities that are significant in
terms of effort and recurring patterns are indeed affected by software architecture and
technical development processes. These effects are reflected in micro-process
activities themselves, cost of the micro-process activities and recurring process
patterns. We use effort and recurring patterns as indicators of importance among
hundreds of activities. As later revealed in structured interviews, explicitly
considering these factors may increase the efficiency of the process and the quality of
the project and can give more concrete guidance for developers at a micro-level.

The main contribution of this work is to provide a better understanding of the
major factors that can influence micro-processes. It will be valuable in offering
further assistance to actively planning micro-processes and bridging the gap between
the macro-process and micro-process.

2 Related Work

Connections between macro-processes and micro-processes are usually created
through organization- or project-specific process tailoring, which can be either top
down or bottom up [4, 7, 14, 18].

In the top down approach, a macro-process is instantiated by considering both
project characteristics and organizational factors. It has been recognized that the main
problem here is the low level of reuse during tailoring; additional context information
used in the tailoring is not systematically reused [7]. Moreover, the resulting process
is not fine-grained enough to provide concrete guidance to developers. The tailoring

 Effects of Architecture and Technical Development Process on Micro-process 51

process is usually about making or selecting optional process elements, or modifying
variant process elements [1]. Since such process elements usually do not include
technology- and product-specific information, the resulting process is not fine-grained
and “micro” enough. This paper addresses these challenges by aiming to develop a
new understanding of major factors in fine-grained tailoring, such as product
architecture and technology-specific development processes.

In the bottom-up approach, an organization usually has a large number of process
assets. However, the composibility of these assets is often poor and the suitability of a
composed process hard to verify [7]. The research in this paper does not address this
issue directly; however, we believe that explicitly considering the additional factors
has the potential to significantly improve the composibility of these assets and to
provide further criteria for assessing the suitability of the composed process.

Both approaches are used to produce development processes for a particular type
of project or technology, such as embedded systems [10] and COTS [12]. However,
both the top-down and bottom-up approaches are not “micro” enough and the
resulting processes are hard to verify.

Traditionally, software architecture affects the software development process in
two different ways. First, architecture design and evaluation methods constitute part
of the whole life-cycle macro-process. Currently there is active research into
streamlining these methods by using additional phases [11]. Such streamlining does
consider the architecture itself, but only the method for producing it. Secondly,
architecture is used to decompose systems into functional modules, which can then be
used in task allocation. This reflects some finer-grained processes, but is confined to
the early planning phase and is fairly simplistic, so that the full potential of the
architecture is not exploited. In this study, we look into taking more advantage of
architecture in the development process.

We believe the missing link between micro-process and macro-process can be
further bridged by considering the architecture and technical development processes.

3 Effects of Architecture and Technical Development Process on
Micro-process

3.1 A Framework of Factors That Affect Micro-process

We first propose a framework that includes all the factors that may have influence on
micro-process, as shown in Figure 1. Some of them, such as macro-process
methodologies, are understood at least in terms of the existence of their influence,
although the exact nature and size of their influence is not completely understood.
Our recent work has explored the existence of other factors, such as the effect of
business processes and business data on software development processes [9].

1. Macro-process methodologies: As mentioned earlier, the generic software
development process is the foundation for any fine-grained micro process through
top-down or bottom-up process tailoring.

2. Functional Requirements: Functional requirements, especially functional scoping
in iteration planning define what needs to be developed at a fine-grained level.
However, they provide information only on ‘what’ to do but not ‘how’ to do it.

52 L. Zhu et al.

4

5

Fig. 1. Factors that affect fine-grained micro-process

3. Quality requirements: Quality requirements (or non-functional requirements)
guide additional quality-related processes. For example, a high-reliability system
may require more testing to be done, or the use of a particular testing technique.

4. Business Process: The need for mechanisms to support the analysis and tracing of
relationships between the business process and the software process is discussed in
[9]. It is critical for instantiating elements of that business process in software.

5. Business Data: Industries have developed electronic business data “standards” to
improve business efficiency and business-to-business interoperability. Such
standards inevitably have to map to technology infrastructures such as service-
oriented architecture. The design decisions embodied in the business data standards
often affect the development process at a fine-grained level.

In this paper, we propose two additional factors: software architecture and the
technical development process.

3.2 Software Architecture Factor

Architectures provide a wide range of information that can benefit micro-process
planning and monitoring. Architectural models of inter-module dependency are
particularly relevant for micro-process. We propose that architectural dependency
models will influence micro-processes in ways including but not limited to the
following:

Claim 1: A micro-process activity usually concerns multiple inter-dependent
architecture modules at the same time.
For example:

• All modules involved in a single micro-process activity when designing,
implementing and testing a module with high dependency.

This is important because coupling information between modules has not been
explicitly used in fine-grained process planning. Tightly coupled modules may be
only suitable for a close team to develop while loosely coupled modules can be
developed in a distributed and parallel manner.

 Effects of Architecture and Technical Development Process on Micro-process 53

Claim 2: The cost of a micro-process activity on a module will be affected by the
architectural dependency characteristics of the module.
Examples of this include:

• Cost of code understanding may be high when the module has high dependency.
• Cost of integration testing will be higher between highly cross-dependent modules

This is important because cost estimation models usually only concern with sizes of
features and function points. Dependencies between functions are not recognised as a
cost factor. Some generic complexity metrics have been used in cost estimation but
are not useful for fine-grained activity costing.
Claim 3: Micro-process patterns can often be better explained by the influence of the
various development stages of different inter-dependent modules rather than by
macro-process phases.
For example:

• During stub creation for unit and integration testing when one unit relies on the
existence of another yet-to-be developed module.

This is important because increasingly, large-scale software is developed in a
concurrent manner. The nature of interactions between these parallel development
processes is important, and architecture is an important factor.

We realize that process planning usually starts at an early stage, sometimes even
before a contract is awarded and the architecture is known. However, we should have
a plan about how fine-grained processes will respond to architecture definitions.

3.3 Technical Development Process Factor

We propose that a technical development process will affect micro-processes by
imposing technology-specific activities, sequences and best practices through process
interactions with macro-processes:

Claim 1: A micro-process activity usually “is” an activity described by a technical
development process rather than an instantiated or tailored macro-process activity.
For example:

• XML schema development processes are technical processes and are also micro-
processes.

This is important because limitations exist in instantiating or parameterizing macro-
processes. A complete top-down approach will never be able to cover the richness of
technical development process activities.
Claim 2: The cost of a micro-process activity will be affected by its technical
characteristics rather than macro-process activities. For example:

• Designing, implementing and testing unique types of technology modules. In the
case of XML development, data update module, up translate/down translate and
cross-translate modules are developed very differently with different cost
implications.

This is important because the technical characteristics of an activity have not been
used in cost estimation models. However, they may have definitive cost implications.

54 L. Zhu et al.

Claim 3: Micro-process patterns are often determined directly by a technical
development process or interactions between a technical development process and a
macro-process rather than a tailored macro-process. For example:

• Designing schema in XML development has a unique sequence of activities. It
little resembles traditional macro-processes.

• A technical development process requires compliance with certain best practices.
A micro-process pattern emerges from interactions between the compliance
processes and the normal development process.

This is important because most process patterns are currently related to macro-
process methodology. Factors affecting micro-process patterns need to be investigated
and eventually used in process planning.

4 Case Study

The primary goal of this case study is to validate the existence of strong influence of
architecture and technical development process in micro-process, through process
mining, architecture reconstruction and structured interviews. Using these factors and
measuring their effects is beyond the scope of this work.

4.1 Project Selection

The details of the projects will be described in section 4.3 and 4.4, along with the
analysis. The general reasons for selecting these two projects are as follows:

• These are two typical and representative projects within the company, not pilot
projects for trialling a new technology, nor instrumented with any particular
process measurement techniques other than what the company is already doing.

• Time sheets for fine-grained process measurement (in addition to billing) are
recorded for all projects. They directly record individual micro-level activities, and
also enable us to mine process patterns from recurring sequences of activities.

• The company has explicitly used software or system architecture in their process
planning. However, only functional module decomposition is used. In one project,
we helped them reconstruct additional architectural views to investigate the
influence of architecture on micro-processes. The influence of technical
development processes (concerning Java) is also evident in this project.

• The company considers that their major process competitive advantage is their
technical development process, in this case related to XML technologies. These
processes are actively used, but are not systematically integrated with their macro-
process definition. In the XML project, we mainly investigate the technical
development processes, although the architecture factor also has some influence.

To build their competitive advantage, the company has focussed on their micro-
processes in XML development. Historically, these are materialized in technical
checklists, best practices, metrics and governance, loosely grouped around macro
processes in an EPG system. However, technical development processes are not used
in their process planning and monitoring.

 Effects of Architecture and Technical Development Process on Micro-process 55

4.2 Data Source and Techniques

The evidence for this case study is collected from multiple sources to avoid any
single-source bias. The data includes source code (for architecture reconstruction),
documentation, time sheets (for micro-process mining) and interviews.

Statistical Mining
To understand how a micro-process is affected by certain factors, we need
information about activities at the micro-level. The time sheets recorded at the
company directly provide us with this information. For example:

From this data, we can extract recurring sequences of activities as micro-process
patterns. Our previous work has successfully performed such mining [5]. Essentially,
we reconstruct a recurring sequence of activities as a micro-process pattern.

Out of all the activities and recurring sequences of activities that we mined, we
excluded the “normal” micro-process activities, such as detailed designing,
implementing, testing a single module, integration and system testing of a particular
sub-system. We then selected the most effort-wise significant micro-processes and
activities and analysed their relationship with architecture and the technical
development process. For the mining of the two projects, please refer to [6]. This
paper only includes a subset of all the mined activities and micro-process patterns that
are relevant to architecture and technical development process.

Reverse Architecting from Source Code
To understand architectural influence on micro-process, we need relevant architecture
views of a system. We associate these views with the mined micro-process. Although
very high-level architecture views exist for both projects, it was still necessary to
reconstruct views that reflected dependency and degree of dependency between
modules.

We used two tools, JDepend and Structural Analysis for Java (SA4J), to conduct
an architecture reconstruction. The aim was to reconstruct the dependency views
between components and see if the degree of dependency influenced micro-process
activities. The following is a brief summary of the each tool’s capabilities related to
dependency:

JDepend - JDepend is an open source tool which provides design metrics beyond
traditional class-level OO metrics by looking at cross-module quantitative inter-
dependency. Among the many metrics supported, the following proved to be
particularly relevant:

• Afferent/Efferent Couplings of Modules: They indicate the outgoing and
incoming dependency degree for a particular module.

• Instability of Modules: This is an indicator of module’s relative resilience to
change.

56 L. Zhu et al.

Structural Analysis For Java (SA4J) - SA4J is a tool from IBM for analysing Java
dependencies. The uniqueness of this tool is its transitive impact analysis and skeleton
diagrams for indirect dependency. They are different from the standard coupling
measurement and appear to be more useful in micro-process. The following metrics
are the most relevant ones:

• Global Butterfly: If the module is changed, it may affect many other components.
• Global Breakable: The module is often affected if anything in the system is

changed.
• Global Hub: The module is both a global butterfly and a global breakable.
• Skeleton: This layered view of the system is constructed by putting modules with

no dependencies on the bottom layer. Modules that are dependent on the lowest
layer appear in the above layer, and so on. In this view, a stable system should
have a pyramid shape. An unstable system may look like an upside down pyramid.

Structured Interviews
Structured interviews were used to validate our process mining findings, to avoid any
single source bias, and to get further insights. We presented micro-process patterns
that were not aligned with macro-processes documented and used through an
electronic process guidance system in the company. In the interview we elicited
causes of these deviations.

4.3 Project A: The Finance Project

Project Description
This project demonstrates the influence of architecture on micro-process. The code
base is an integral part of a series of financial products that are written in Java. The
system generates financial data which can be accessed by subscribers to the service.
The financial data produced by the application needs to be generated in an
extremely flexible manner so that it can be easily tailored to each subscriber’s
needs. The content delivery mechanism exploits XML formats and XSLT
transformations to render tailored views. The code has been refactored on several
occasions to progressively improve the design quality and functionality. It has 50k
lines of code with 296 classes/interfaces in 27 packages. It took 1600 man hours to
produce.

Reconstructed Architecture
Figure 2 shows the reconstructed module dependency view and skeleton view.
Drilling down the dependency line can reveal the degree of dependency. The skeleton
view also reflects indirect dependency. The skeleton diagram shown here particularly
depicts the dependencies of the util module. The grey squares represent classes and
interfaces in the whole system. The red (black) 1 squares represent the classes/
interfaces in the util package. The orange (light grey) squares represent the
classes/interfaces that depend on the util (red) package. For details of the
reconstruction, please refer to [3].

1 Colors in braces are for black and white prints of this document.

 Effects of Architecture and Technical Development Process on Micro-process 57

Fig. 2. Module Dependency Diagram and Skeleton Diagram

The tool returned a ranked list of global breakables, global butterflies and global
hubs. The top 3 modules for each of them are:

• Global Breakable: Content.ViewPortfolio, Content.ViewPortfolioProfile
• Global Butterfly: XMLUtils, Debuggable, XMLSerializable
• Global Hub: HomeFactory, LicenceHome, HomeManufactruable

These highly ranked modules are used in cross-checking with modules involved in
unusual micro-process activities and cost.

Data Analysis
According to our criteria for mining, we selected the most effect-wise significant
activities. Among the most costly activities (more than 30 man-hours to complete)
and recurring process patterns, the following nine have a direct relationship with
architecture. Each of them supports claims about architecture influence on micro-
processes in section 3.2. We confirmed these findings in follow-on interviews.

• Conducting integration testing between two highly dependent modules [claim 2]
• Designing a specific module when understanding of a highly dependent module is

needed [claim 2]
• Understanding and analysing existing modules. These modules are global hubs.

[claim 1]
• Refactoring at architectural level, including creating new modules that were not

previously used for task allocation [claim 1]
• Cleaning up code for integration of two highly dependent modules [claim 1]
• Making certain part of the UI “smart” (dynamic rather than hand-coded) [claim 1]
• Working on a logical group of dependent modules together [claim 1]
• Producing cross-phase process patterns between design and implementation when

detailed design is not available [claim 3]
• Extending existing open-source modules when there is a high dependency between

modules [claim 3]

58 L. Zhu et al.

4.4 Project B: The XML Project

Project Description
This project demonstrates the influence of technical development processes. The
project developed a Java tool with XML processing capabilities. The project took
2900 man-hours to complete. We did not have access to the source code, and so the
architecture recovery tools could not be used, but a high-level system architecture
with functional decomposition was made available, and was matched against the
modules recorded in the time sheet records.

XML Technical Development Process
The following is a high-level view of the XML technical development process the
company has used. For each of the activities and sub-activities there are associated
best practices, activities and checklists. The process is largely derived from previous
work on XML process models [17].

• Develop (Analyze/Design/Implement/Test) data capture module
• Create Data
• Update Data

• Develop data query modules
• Server-side query module
• Client-side query module

• Develop data transformation module
• Up-translate module: transform non-XML documents to XML documents
• Down-translate module: transform XML documents to non-XML documents
• Cross-translate module: transform XML documents to XML documents

• Develop intermediary schemas.

Data Analysis
The criteria for the following activities or sequence of activities are the same as
before. Among the most costly activities (more than 30 man-hours to complete) and
micro-process patterns, the following seven have a direct relationship with the
technical development process. Each of them supports claims about technical
development processes in section 3.3. We confirmed these findings in follow-on
interviews.

• Create and code intermediary XSD [claim 1 and 2]
• Technology investigation and learning (even for the developers, who are

experienced XML developers, understanding certain new trends and best practices
took a significant amount of time) [claim 1 and 2]

• Set up the technology environment
• Develop a data update module [claim 1 and 2]
• Develop a up-translate module [claim 1 and 2]
• Develop a client side query module [claim 1 and 2]
• Schema re-design during implementation [claim 3]
• Requirement negotiation during development [claim 3]

 Effects of Architecture and Technical Development Process on Micro-process 59

For example, the cost effects had a distinctive pattern: developing the cross-
translate component takes the least amount of time, while developing the up-translate
component takes the most amount of time.

5 Discussion

A number of cross macro-process phase activities were found during the mining.
They do not follow the macro-process, even considering iterations. This strongly
validates the observations on programming rework [2] which sees cross-phase rework
are much more complicated than simple redo and iteration. However, we have not yet
investigated the factors affecting rework.

In our previous work [6], we thought discrepancies were due to enactment
problems or that the macro-process needed to be changed. However, after further
study, we have found that it is due to the nature of differences between macro-process
and micro-process. Iterations on a macro-process level involve finishing one phase
then going to the next one, usually over a period of days, if not weeks. At a more
detailed level, we have observed that developers switch between phases in a unusual
order for many reasons, including:

• Highly-coupled modules at different development stages
• Requirements maturity for a particular module
• Unique features of some technical development process
• Interactions among different processes (such as generic processes, technical

development processes, quality assurance and compliant processes) at different
abstraction levels

This is especially evident in the Project B, due to the nature of XML development,
which is more about understanding the requirements and making tradeoffs in schema
development (sometimes this is even done by the customer), and incorporating
technical best practices and strong quality assurance to the normal development in a
parallel development fashion.

We realize that there are a number of limitations of this study:

1) There are actually a large number of factors, as identified in Figure 1. We only
considered two factors in this paper due to limits to the scope of our investigation. We
realize that certain factors may play a more dominant role than others.

2) Using these factors actively in process planning may be different to after-event
observation. We are planning a case study on actively investigating the use of these
factors in process planning.

6 Conclusion and Future Work

Across the industry, more sophisticated process engineering is needed. This requires
increased understanding of fine-grained micro-process and filling the gap between
macro- and micro-processes. In this paper, we investigated two major factors:
software architecture and the technical development process. We are currently
planning a new full-scale case study on using these factors in continuous
micro-process planning and monitoring. We are also developing a technical

60 L. Zhu et al.

governance framework to be used by both management and developers for
communicating effectively.

References

[1] J. Bhuta, B. Boehm, and S. Meyers, Process Elements: Components of Software Process
Architectures, 2005.

[2] A. Cass and L. Osterweil, "Programming Rework in Software Processes," Department of
Computer Science, University of Massachusetts UM-CS-2002-025, 2002.

[3] I. Gorton and L. Zhu, "Tool Support for Just-in-Time Architecture Reconstruction and
Evaluation: An Experience Report," in 27th International Conference on Software
Engineering (ICSE), 2005, pp. 514 - 523.

[4] G. K. Hanssen, H. Westerheim, and F. O. Bjornson, "Tailoring RUP to a Defined Project
Type: A Case Study," in Product Focused Software Process Improvement (PROFES),
2005, pp. 314-327.

[5] M. Huo, H. Zhang, and R. Jeffery, "An exploratory study of process enactment as input to
software process improvement," in International Workshop on Software Quality at
International Conference on Software Engineering (ICSE), Shanghai, 2006.

[6] M. Huo, H. Zhang, and R. Jeffery, "A Systematic Approach to Process Enactment
Analysis as Input to Software Process Improvement or Tailoring," in Asia-Pacific
Software Engineering Conference (APSEC), 2006.

[7] O. Jaufman and J. Munch, "Acquisition of a Project-Specific Process," in Product
Focused Software Process Improvement (PROFES), 2005, pp. 328-342.

[8] R. Jeffery, "Achieving Software Development Performance Improvement Through
Process Change," in Software Process Workshop (SPW), Beijing, China, 2005, pp. 43-53.

[9] R. Jeffery, "Exploring the Business Process-Software Process Relationship," in Software
Process Workshop/Workshop on Software Process Simulation and Modeling
(SPW/ProSim), 2006.

[10] E. Johansson, J. Nedstam, F. Wartenberg, and M. Host, A Qualitative Methodology for
Tailoring SPE Activities in Embedded Platform Development, 2005.

[11] R. Kazman, H. P. In, and H.-M. Chen, "From requirements negotiation to software
architecture decisions," Information and Software Technology, vol. 47, pp. 511-520, 2005.

[12] M. Morisio, C. B. Seaman, V. R. Basili, A. T. Parra, S. E. Kraft, and S. E. Condon,
"COTS-based software development: Processes and open issues," Journal of Systems and
Software, vol. 61, pp. 189-199, 2002.

[13] J. Münch, "Transformation-based Creation of Custom-tailored Software Process Models,"
in International Workshop on Software Process Simulation and Modeling (ProSim),
Scotland, UK, 2004.

[14] A. Ocampo, F. Bella, and J. Münch, "Software Process Commonality Analysis," in
International Workshop on Software Process Simulation and Modeling (ProSim),
Scotland, UK, 2004.

[15] L. Osterweil, "Unifying Microprocess and Macroprocess Research," in Software Process
Workshop (SPW), 2005, pp. 68-74.

[16] D. Rombach, "Integrated Software Process and Product Lines," in International Software
Process Workshop (SPW), 2005, pp. 83-90.

[17] T. T. Tran, "An Interim Report of XML Process Models," School of Computer Science
and Engineering, University of New South Wales UNSW-CSE-TR-0613, 2006.

[18] H. Washizaki, "Building Software Process Line Architectures from Bottom Up," in
Product-Focused Software Process Improvement (PROFES), 2006, pp. 415-421.

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 61–72, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Comparative Experiences with Electronic Process Guide
Generator Tools

Monvarath Phongpaibul, Supannika Koolmanojwong, Alexander Lam,
and Barry Boehm

Center for Systems and Software Engineering
University of Southern California

Los Angeles, CA 90089-0781
{phongpai,koolmano,alexankl,boehm}@usc.edu

Abstract. The primary objective of all software engineering courses is to help
students learn how to develop successful software systems with good software
engineering practices. Various tools and guidelines are used to assist students to
gain the knowledge as much as possible. USC’s Center for Systems and
Software Engineering (CSSE) has found that the keystone course in learning
software engineering is a year-long real-client team project course. Over the last
ten years, CSSE has evolved a set of guidelines for the course, and has
experimented with early tests for creating electronic process guides for MBASE
(Model-Based (Systems) Architecting and Software Engineering) Guidelines
using Spearmint/EPG. Currently, CSSE has been developing and experimenting
with Eclipse Process Framework’s (EPF) to situate the LeanMBASE
Guidelines. This paper reports our comparative experiences of using the earlier
and current tools to generate the electronic process guidelines. In our analysis,
we used the objectives defined by Humphrey and Kellner[17] to compare the
process tools. The evaluation identifies some research challenges and areas for
future research work.

Keywords: Process modeling tools, Electronic process guide generator tools.

1 Introduction

In the keystone two-semester team project graduate software engineering course
sequence CS577ab [28] at USC, students learn through experience how to use good
software engineering practices to develop software systems from the Inception Phase
to the Transition Phase, all within a 24-week schedule. Students in the class form 6-
person teams to develop real-client software system projects. From 1998 – 2005,
students used Model-Based (Systems) Architecting and Software Engineering
(MBASE) [23] method and MBASE Guidelines as the methodology to develop their
systems. However, in 2005, the LeanMBASE replaced the MBASE in order to reduce
the documentation workload and to fit with small-sized and limited scheduled projects
by focusing on high-value activities. We are now preparing to transit the paper-based
LeanMBASE guidelines into an electronic modeling framework.

In most project course situations, students use a set of paper-based guidelines
outlining what they need to describe and do to build a system. But paper-based

62 M. Phongpaibul et al.

guidelines have their limitations as they cannot be used effectively to show how a
software process works. Students just learn what they are suppose to document, but
won’t learn how a process should be applied and tailored to a project. Other benefits
of electronic-based guidelines include easy access for all users, making updated
information immediately available to all users, providing links to templates and
examples, and easier navigation of the guidelines [2],[5],[19],[24]. Thus, we have
explored using process modeling tools to teach students what a software process is.
The end result of these programs is a website that students can view to learn about the
software process. The benefit of using such tools is that it shows what the relationship
is between actors, tasks, guidance tools, and work products of a software process. In
addition, the tools allow for easier tailoring of software processes.

In this paper, we compare our experiences in using two electronic process guide
generator tools: Spearmint/Electronic Process Guide (EPG) [4] and Eclipse Process
Framework (EPF) using the criteria defined by Humphrey and Kellner [17]. The
Spearmint tool was used to model the earlier MBASE Guidelines and was used in the
software engineering classes between 2000 and 2003. Currently, we are investigating
how to use EPF to model the LeanMBASE Guidelines.

This paper is organized into 6 sections. Following this introduction, section 2.1
introduces MBASE, LeanMBASE and OpenUP including their similarities and
differences. In section 2.2, we present the overview of two process modeling tools
that are Spearmint/EPG and EPF Composer. Section 3 describes the experience
comparison between modeling MBASE Guidelines into Spearmint/EPG and
modeling LeanMBASE Guidelines into EPF Composer. The future challenges are
discussed in section 4 followed by conclusion in section 5 and references in section 6.

2 Background and Overview

2.1 Process Guideline Overview

2.1.1 MBASE and MBASE Guidelines
Model-Based (System) Architecting and Software Engineering (MBASE) is a set of
guidelines that explain software engineering principles and techniques that is used for
developing software projects[23]. MBASE shares many aspects with the Rational
Unified Process (RUP) [22], including the use of the Unified Modeling Language
(UML) [27] and the spiral model anchor point milestones [6].

From Fall 1998 to Spring 2005, MBASE had been used as guidelines for students
in the software engineering courses to develop real-client service projects. The
MBASE guidelines mainly specify the content, format and templates for 19 types of
project artifacts in various phases. [11]. The MBASE Guidelines also cover several
software tools that the students should use for various activities, such as the Easy
WinWin negotiation tool [9], effort reporting tool, risk identification tool, and USC
COCOMO II [8] and COCOTS [1] software cost modelling tools. To fit with the
class’s nature, stakeholders can be primarily categorized as client, maintainer, end
user, teaching staff, and development team. The development team is composed of 5-
6 on-campus students and 2 Independent Verification and Validation (IV&V)
students. The IV&V people are off-campus students who act as independent peer
reviewer and quality assurance agents.

 Comparative Experiences with Electronic Process Guide Generator Tools 63

A major learning and grading artefact in the course is a reflective critique of the
student’s project experience. From the critiques of using the MBASE Guidelines in
our software engineering course, we found that with the limited schedule and the
small project size, the development teams spent increasingly too much time in
documenting the project artifacts. As a result, we reduced the project document size
by getting rid of unnecessary and duplicated information for light-weight projects. In
Fall 2005, the 260 pages of MBASE Guidelines were replaced with 90 pages of
LeanMBASE Guidelines.

2.1.2 LeanMBASE Guidelines
LeanMBASE is the light-weight version of MBASE, which inherits all core
approaches from MBASE such as milestones, iterative refinement, using the risk-
driven, Win–Win Spiral approach [6], all critical activities such as requirement
negotiation, risk identification and mitigation, project planning, business case
analysis, use-case driven process, risk-driven prototyping [11], and same set but
leaner version of project artifacts.

MBASE and LeanMBASE contain similar set of artifacts, but in order to enhance
traceability, LeanMBASE avoids all duplication and makes the LeanMBASE more
customizable based on project needs. LeanMBASE introduces a new artifact, which
acts as an artifact package header that contains status of the package, glossary,
traceability matrix and document tailoring information.

LeanMBASE has been used in software engineering classes at USC since Fall
2005. The result of effort report and document analysis has shown that LeanMBASE
remarkably reduced document size and time spent in their project development.

2.1.3 Open Unified Process (OpenUP)
“OpenUP” (Open Unified Process) is a revision of the iterative Rational Unified
Process for software development process that is minimal, complete, and extensible.
The process is minimal in that only fundamental content is included. The process is
complete in that it can be manifested as an entire process to build a system. The
process is extensible in that it can be used as a foundation on which process content
can be added or tailored as needed [26].

OpenUP is similar to LeanMBASE in the sense that it is leaning toward agile
approach. As with LeanMBASE, OpenUP is a combination of best practices from
both plan-driven and agile methodologies. OpenUP not only has the essential
characteristics of a Unified Process, which includes iterative development, use cases
and scenarios driving development, risk management, and an architecture-centric
approach [22], but it also contains the agile concepts such as customer collaboration,
test-first design, continuous integration, time-boxed iteration, scrum meeting and
refactoring. By combining the agile approaches into its process, OpenUP considers
itself as an agile process rather than a lightweight process [26].

2.2 Electronic Process Guide (EPG) Generator Tool Overview

Many software processes are complex. It is hard for both process engineers to capture
all the process guidelines and process performers to follow these guidelines. In order
to make the software process easier to follow, process engineers can use the formal

64 M. Phongpaibul et al.

language called process definition languages (PDL) to specify the process that have to
be done or they can use tools to help generate the electronic process guide (EPG).

In attempt to model MBASE/LeanMBASE, we chose EPG generator tools over
PDLs because of the limited capabilities of PDLs to represent a non-sequential
process like MBASE/LeanMBASE. For PDLs, the pre-condition, post-condition, and
the sequence of tasks have to be specified in advance. In MBASE/LeanMBASE, there
is no required sequence of tasks users have to follow. MBASE is risk-driven and in
some cases, it would be appropriate based on risks to perform the tasks in a different
order as suggested by the guidelines.

2.2.1 Spearmint/EPG (Electronic Process Guide)
Spearmint is an integrated environment for modeling, analyzing, and measuring
process [3]. The objective of Spearmint is to improve understanding and
communicating of software process. It is the tool for process engineers to model their
process and convert the process to an electronic version called Electronic Process
Guide (EPG) [25].

Spearmint provides four different views of a process model for process engineer:
product flow view, properties view, decomposition view and textual view [4]. Each
view is designed to model the different perspective of a process. For example, the
product flow view is the graphical view, which contains the relationship between
artifacts, activities, roles and tools. The properties view is for capturing the detail of a
process model element such as agent/role, activity, artifact and tool. All of the
process model elements are kept as objects in the database and to be generated to EPG
by the EPG generator. EPG generator generates a set of html files that can be
accessed through web browser [2],[3].

EPG is composed of a project main page (Figure 1) and an individual page for each
element. The project main page (Figure 1) provides lists of all the activities, artifacts,
agents (roles) and tools. All the process model elements are displayed as hyperlink to
its individual page [4].

Fig. 1. A project main page of MBASE 577 process guide

 Comparative Experiences with Electronic Process Guide Generator Tools 65

2.2.2 EPF Composer (EPFC)
EPF Composer (EPFC) is a process-management tool platform [16]. It also provides
the extensible process framework (called OpenUP as described in 2.1.3) for authoring
and tailoring. There are two main objectives of EPF. The first objective is to provide
a central knowledge base to the process performers. All of the process elements are
stored in the objects called method content. Method content is where the method
elements (roles, tasks, artifacts and guidance) are defined regardless of how they will
be used in the process [15].

The second objective is to provide a tool for process engineers to select, tailor and
assemble their process from the method content. Since EPF stores the process content
separately from the process, the process engineer can create a new process by
configuring the pre-defined content in the method content area. As a result, process
engineers can create different processes for different types of project using the pre-
defined content in the method content library [15].

The same as Spearmint, EPF Composer automatically converts the process content
into electronic process (html files). The process performers can access the electronic
process via the internet or intranet.

Fig. 2. An example of EPF Composer Interface

3 EPG Generator Tool Comparison

In our analysis, we used the following objectives to compare the process tools as
defined by Humphrey and Kellner. The first objective is that it should effectively
communicate the process to the end-users. The second objective is that is should
allow for easy reuse of an existing process since process development can be time-
consuming. The third objective is that the tool should allow the process to easily

66 M. Phongpaibul et al.

evolve. Finally, the fourth objective is that the tool should help with process
management allowing users to measure project status against the process. [17]

For this comparison, we evaluated the Communicate Process objective in several
ways. We evaluated the representation of the process elements and the relationship
between the elements each tool used. Furthermore, we examined how a software
process was represented and communicated to process users. For the Process Reuse
objective, we examined how each tool supported reusable process elements and
content. For the Process Evolution objective, we analyzed how easy it was to tailor an
existing process and how changes to the process were stored for reference. In
addition, we looked at how easy it was evolve a process for each tool. For the Process
Management objective, we did not look at this, as both tools did not allow for project
tracking. However, it is possible in EPF to export a Work Breakdown Structure to a
project-tracking tool such as Microsoft Project. In addition to these 4 objectives, we
analyzed ease of use for each tool from a process engineer point of view.

3.1 Representation of Process Elements (Roles, Tasks, Artifacts, and
Tools/Guidance)

Both EPG and EPFC have the functionality of modeling process elements such as
roles/agents, tasks/activities, artifacts, tools, templates and properties. However,
EPFC offers more representation for guidance such as checklist, example, guideline,
template, and tool mentor. These extra representations give the process engineer
more alternatives to give guidance and give the process performers multiple types of
help. For example in our LeanMBASE plug-in, we can include the example of an
architecture model or example of a benefit chain model. We can attach the risk
identification checklist into the “Identify Risk” task, which is one task in the
LeanMBASE plug-in for the students to make sure all the major risks are identified.
We also provide the checklist for the completion of the milestone, which the students
can easily access to check that they have accomplished the goals for the current
milestone and are ready to begin the next one.

Besides offering the extra representations, EPFC also provides more properties for
each process element than EPG. For example, for the role element, EPG only
describes the artifacts and activities that the role is responsible for. EPFC provides
the attribute for skills of the role and the assignment approaches to guide who should
be assigned to this role. For the task elements, EPFC has an attribute by which the
process engineers can enter the detail steps to perform a task. The process engineers
can configure these steps to indicate which iteration to perform.

3.2 Representation of Relationship Between the Process Elements

One main purpose of modeling process is to connect the relationship between the
process elements. In EPG, the relationship of an element is only described textually.
There is no visual representation to illustrate this relationship. The process performers
need to browse to an individual page to search for the relationship. On the other hand,
EPFC provides the visual diagram to present the relationship between role, tasks and
work product. Figure 3 shows an example of a visual diagram illustrating the project
manager and his/her responsibilities.

 Comparative Experiences with Electronic Process Guide Generator Tools 67

Fig. 3. Example of a visual diagram representing the project manager and his/her responsibility

3.3 Representation of a Process

The main advantage of EPFC over EPG is that EPF provides the process
representation via work breakdown structure (WBS) and activity diagram [27]. EPG
only generates the behavior and functional diagram for the process. EPFC uses the
concept of nested activities to define the process. The activity in WBS can
breakdown into sub-activities. Processes that are defined in EPFC are composed of a
set of activities, which in turn can be composed of another set of activities. For
example, in Figure 4, the Inception phase in LeanMBASE process lifecycle is the set
of initial project, manage iteration, manage requirements and determine architectural
feasibility activities. In the manage requirements, we can define “requirement
negation” activity as a nested activity.

Fig. 4. An example of activity diagram and WBS provided by EPFC

68 M. Phongpaibul et al.

Figure 4 shows the activity diagram and WBS of the Inception phase. It also
provides the navigation tree to all the phases on the left side. The process performers
can see that there are 4 main phases for LeanMBASE: Inception, Elaboration,
Construction and Transition. They can click on the Inception phase to see the
decomposition of the activities and tasks.

The WBS and activity diagram give an overview to process performers to see how
the process life cycle should look like, which iteration to perform which activities and
in which order. For example, the process performers can see that in the Inception
phase, the “determine architectural feasibility” activity and “manage requirement”
activity are performed concurrently and “manage iteration” is performed from the
beginning of iteration to the end of iteration.

However, in order to model LeanMBASE, EPFC still has limitations. In our class,
the students use the LeanMBASE with spiral model [13]. In the spiral model, there
are tasks and steps, which need to be performed more than once per iteration. EPFC
cannot model loop tasks at the activity level and cannot model the concurrent steps
and multiple loop steps at the task level (if there is any). For example, if an architect
determines that the software’s architecture is not feasible, the architect may want to
go back in the iteration to have the project team renegotiate requirements and/or re-
plan the iteration.

Furthermore, when performing the spiral process, there may be (sub)-spirals inside
of a spiral. For example, in the satellite-experiment software [7], there is the
uncertainty about whether the fault-tolerant features are going to cause an
unacceptable degradation in real-time performance. The paper suggested that the best
ways to reduce this source of risk is to buy information about the actual situation by
investing in a prototype to better understand the performance effects of the various
fault-tolerance features. As a result, the development of the prototype project should
follow its own spiral, which is nested within the project’s spiral.

3.4 Support Reusable of Content in the Process

EPFC supports reusability of content in the process. EPFC’s approach is to separate
the method content and process content so the process engineer can make changes in
the method content without changing the process content. Thus, method content and
process content are independent. For example, when the process engineer wants to
create a new process, the engineer can quickly assemble a new process by reusing
existing method elements (such as task or role) from the method content library. In
addition, EPFC allows the process engineers to copy whole or parts of existing
processes from the library.

However, there are some limitations. The process engineer cannot change or edit
the content or relationships of the content element, which inherits from the existing
method contents.

3.5 Dynamic Process Configuration

By dynamic process configuration, we define as the project teams have ability to
tailor a process guideline in real-time. Currently, neither EPG nor EPFC provide this
capability. In our software engineering courses, the LeanMBASE process does not fit

 Comparative Experiences with Electronic Process Guide Generator Tools 69

all projects. Some teams will have to tailor the process in real-time to meet their
project needs. For instance, the LeanMBASE Guidelines recommends team do a
technology-independent architecture model, followed by a technology-specific
architecture model. However for teams who are constrained to use specific
technologies, a technology-independent architecture model will be of no use to them.
Thus, the process will need to be tailored down to remove the technology-independent
architecture model task. In the EPFC case, the team will have to learn how to use
EPFC at its process composition level and modify the process elements as needed.

3.6 Integration to the Other Software Engineering Tools

EPFC provides the integration to two software engineering tools. First EPFC allows
you to export a WBS to Microsoft Project or integrate with Rational Portfolio [18] for
project planning and tracking. The managers can thus use the WBS as an initial set of
project plan elements to help them plan their project. Second, a process engineer also
can integrate EPFC with configuration management tools such as Concurrent
Versions System (CVS). This aids process engineers in keeping track of the evolution
of the process.

3.7 Comparative Usage Statistics

Development of the MBASE EPG using Spearmint took a PhD student roughly 2
person months and produced a Guide including roughly 8 roles, 11 artifacts, and 45
activities. Students found it quite helpful for exploring the basic relations between
agents, artifacts, and activities and for accessing artifact templates. However, they
found it too limited with respect to tailoring options, and too difficult to quickly learn
how to tailor the guidelines at the Spearmint level. Also, later PhD students found
Spearmint extremely difficult to use in updating the MBASE EPG, resulting in
discrepancies between the evolving MBASE Guidelines and the EPG.

Development of the LeanMBASE EPF capability involved two PhD students and a
total of roughly 100 person-hours, or roughly two-thirds person-month at 152 work
hours/month. The result included approximately 12 roles, 15 artifacts, and 20 tasks,
along with 50 guidances (which includes guidelines, examples templates, tool
mentors, and checklists). Evolving the resulting EPF capability has been significantly
easier than with Spearmint, subject to the desired additional capabilities discussed
above.

4 Future Challenges for Software Process Modeling Tools

The increasing diversity of software projects, with various combinations of COTS,
open source, legacy, and custom software and rapidly evolving products, methods,
and tools create a number of challenges for software process modeling tools. Not only
will they need high degree of flexibility and tailorability, but also they will need
strong change propagation and version control capabilities to ensure consistent model

70 M. Phongpaibul et al.

changes and the ability to evolve versions for some users without upsetting support of
other users.

These are nontrivial challenges, but the kind of support that advances process
modeling tools will provide will be absolutely essential to future software teams
attempting to succeed on the complex, globally distributed software projects of the
future.

5 Conclusion

In this paper, we compared two process generator tools: Eclipse Process Framework
and Spearmint/EPG. In our evaluation, we used four objectives to compare the
process tools as defined by Humphrey and Kellner [17]: communicates process,
process reuse, process evolution, and process management. Table 1 is the summary
how Spearmint/EPG and EPF fared when compared to the above objectives.

From our experience, Spearmint, which is one of the early process generator tools,
has some limitations on usability, modifiability and extendibility. EPF, which is a
more recent tool, provides more capabilities to model process and is easier to use, but
EPF still has its own limitations of dynamic process configuration. Finally, for the
future, projects will be more diverse and thus will need high degrees of flexibility and
tailorability when modeling the project’s software processes. In addition, the tools
will need strong change propagation and version control capabilities to ensure
consistent model changes and the ability to evolve versions for some users without
upsetting support of other users.

Table 1. Comparing Process Tools

 EPG EPF
Communicates
Process

Uses text and some pre-drawn
diagrams to communicate
process. Provides semi-detailed
description of each activity.

Uses activity diagrams, work-
breakdown structures, and text to
communicate process. Provides
step-by-step instructions on how
to perform each task.

Process Reuse Not available - Have to start
over with each new process.

Process elements meant to be
reusable by other processes

Process Evolution Difficult – Need to re-specify the
content to tailor the new process.

Allow the extension and
tailoring of existing process.

Process
Management

Does not allow tracking of process Does not allow tracking of process

References

1. Abts, C., Boehm, B. and Clark B., "COCOTS: a COTS software integration cost model,"
Proceedings ESCOM-SCOPE 2000 Conference.

2. Becker, U., Hamann, D., Münch, J., and Verlage, M., “MVP-E: A Process Modeling
Environment”. IEEE TCSE Software Process Newsletter, (10):10–15, Fall 1997

 Comparative Experiences with Electronic Process Guide Generator Tools 71

3. Becker, U., Hamann, D., and , “Support for the Process Engineer: The Spearmint
Approach to Software Process Definition and Process Guidance”. Matthias Jarke, Andreas
Oberweis(Eds.): Advanced Information Systems Engineering, Proceedings of the 11th
International Conference CAiSE'99, Lecture Notes in Computer Science, Vol. 1626, pp.
119-133. Springer, 1999

4. Becker, U. and Verlage, M., “The V-Modell Guide: Experience with a web-based
approach for process support” Proceedings of Software Technology and Engineering
Practice 99, 1999

5. Becker, U., Scott, L. and Zettel, J., "Process engineering with Spearmint(/EPG".
Proceedings of the 22nd International Conference on Software Engineering, pp. 791-792,
2000

6. Boehm, B., “Anchoring the Software Process”. IEEE Software, pp. 73-82, July 1996
7. Boehm, B., “Software Risk Management: Principles and Practices”. IEEE Software, pp.

32-41, January 1991
8. Boehm, B., Horowitz E., Madachy R., Reifer D., Clark B., Steece, B. Brown AW.,

Chulani, S. Abts, C “Software Cost Estimation with Cocomo II” Prentice Hall, July 2000
9. Boehm B., Grünbacher P., Briggs B., “Developing Groupware for Requirements

Negotiation: Lessons Learned”, IEEE Software, May/June 2001, pp. 46-55
10. Boehm, B. and Port, D., “Escaping the Software Tar Pit: Model Clashes and How to

Avoid Them”. ACM Software Engineering Notes, January 1999, pp. 36-48
11. Boehm, B., Port, D., Abi-Antoun, M., and Egyed, A., “Guidelines for the Life Cycle

Objectives (LCO) and the Life Cycle Architecture (LCA) deliverables for Model-Based
Architecting and Software Engineering (MBASE)”. USC Technical Report 1998

12. Boehm, B., Port, D., Egyed, A., Abi-Antoun, M. “The MBASE Life Cycle Architecture
Milestone Package: No Architecture is An Island”. In First Working IFIP Conference on
Software Architecture (WICSA'1), 1998

13. Boehm, B., Egyed, A., Kwan, J., Port, D., Shah, A., and Madachy, R., "Using the
WinWin Spiral Model: A Case Study", IEEE Computer, July 1998, pp. 33-44

14. Booch G., Rumbaugh, J., and Jacobson, I., “The Unified Modeling Language User Guide”,
Addison Wesley, 1999

15. Haumer, P., “Eclipse Process Framework Composer Part 1 and 2”. User Documentation,
http://www.eclipse.org/epf/general/getting_started.php

16. Haumer, P. “Increasing Development Knowledge with EPFC”. Eclipse Review, Vol. 1,
no. 2, pp. 26-33, Spring 2006

17. Humphrey, W. and Kellner, M. “Software Process Modeling: Principles of Entity Process
Models.” Proceedings of the 11th International Conference on Software Engineering, PA,
USA, 1989. pp. 331 – 342.

18. IBM Rationale Portfolio Manager, http://www-306.ibm.com/software/awdtools/portfolio/
index.html

19. Kellner, M. “Software process modeling support for management planning and control”.
In Mark Dowson, editor, Proceedings of the First International Conference on the
Software Process, pages 8–28. IEEE Computer Society Press, August 1991

20. Kellner, M. Becker, U., Riddle, W., Tomal, J., and Verlage, M., “Process guides: Effective
guidance for process participants”. Proceedings of the Fifth International Conference on
the Software Process, pages 11–25, Chicago, IL, USA, June 1998 ISPA Press

21. Kroll, P. and Sand, P. “A Development Library at Your Fingertips”. Eclipse Review, Vol 1,
no. 3, pp. 258-28, Summer 2006

22. Kruchten, P., “The Rational Unified Process (2nd ed.)”. Addison Wesley, 2001
23. “MBASE Website” http://sunset.usc.edu/csse/research/mbase/

72 M. Phongpaibul et al.

24. “OpenUP/Basic – A Process for Small and Agile Projects”. User Documentation, http://
www.eclipse.org/epf/general/getting_started.php

25. Scott, L., Carvalho, L., Jeffery, R. and D’Ambra, J., “An Evaluation of the Spearmint
Approach to Software Process Modelling”. Proceeding of the European Workshop on
Software Process Technology 2001 (EWSPT 2001), page 77-89, 2001

26. Scott, L., Jeffery, R., and Becker-Kornstaedt, U., “Preliminary Results of an Industrial
EPG Evaluation” 4th ICSE Workshop on Software Engineering over the Internet, IEEE
Computer Society, California, USA, 2001, pp. 55 – 58

27. UML Resource Page, http://www.uml.org/
28. USC Software Engineering Class I Website, http://greenbay.usc.edu/csci577/fall2006/site/

index.html

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 73–83, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Jasmine: A PSP Supporting Tool

Hyunil Shin, Ho-Jin Choi, and Jongmoon Baik

Information and Communications University, School of Engineering,
119 Munjiro, Yuseong-gu, Daejeon, 305-732, Korea
{linugee,hjchoi,jbaik}@icu.ac.kr

Abstract. The PSP (Personal Software Process) was developed to help devel-
opers make high-quality products through improving their personal software
development processes. With consistent measurement and analysis activities
that the PSP suggests, developers can identify process deficiencies and make a
reliable estimate on effort and quality. However, due to the high-overhead and
context-switching problem of manual data recording, developers have difficul-
ties to collect reliable data, which can lead to wrong analysis results. Also, it is
very inconvenient to use the paper-based process guide of the PSP in navigating
its process information and difficult to attach additional process-related infor-
mation to the process guide. In this paper, we describe a PSP supporting tool
that we have developed to deal with these problems. The tool provides auto-
mated data collection and analysis to help acquire reliable data and identify
process deficiencies. It also provides an EPG (Electronic Process Guide) in or-
der to provide easy access and navigation of the PSP process information,
which is integrated with an ER (Experience Repository) to allow developers to
store development experiences.

Keywords: Personal Software Process, Electronic Process Guide, Automated
Data Collection, Experience Repository.

1 Introduction

Continuous process improvement has been regarded as a solid solution to make
high-quality products at the team and personal level as well as at the organization and
project level. The PSP [1] was developed to help individual developers make high-
quality products through improving their personal software development processes.
The PSP provides a set of methods and practices to assist individual software devel-
opers to improve product and process quality such as defined and measurable process,
size and effort estimation based on historical data, code and design review, precise
designs, process quality measures, detailed plan, and earned value tracking. While the
PSP has been proved as an effective way to improve the accuracy of effort estimation
and to reduce defects in case studies [13, 14, 15], its manual data recording and paper-
based process guide act as barriers in following the PSP process.

Among those methods and practices, the measurement and analysis is a central and
core practice in identifying process deficiencies and providing a focus on process
improvements. Sets of historical project data are used to make a reliable estimate on
effort and quality. However, due to the high-overhead and context-switching problem

74 H. Shin, H.-J. Choi, and J. Baik

of manual data recording, developers have difficulties to acquire reliable data, which
can lead to wrong analysis results [2, 3]. The problem can be overcome through an
automated tool for collecting the PSP data and analyzing the collected data. However,
since an automated tool can not collect all necessary data, manual data recoding
should be supported as well. Manual data recording can be still a problem, but data
errors can be decreased because it is reduced to a few items. To help developers col-
lect reliable data and all necessary data, it is therefore required to develop a tool for
supporting both automated and manual data collection.

The PSP provides a set of increasingly evolved processes to help developers learn
the methods and practices. To guide developers in following the processes, materials
such as scripts, templates, and checklists are presented in a paper form, which can be
seen as a paper process guide. A paper process guide generally has problems in its
usability and maintenance because it is very inconvenient for developers to search and
navigate process information and difficult to add process-related information or to
modify existing information [8]. To solve these problems caused by a paper process
guide, an EPG using the web technology is proposed allowing easy access to all proc-
ess-related information [5, 8]. To allow easy navigation of the PSP process informa-
tion and to enable storing additional information, it is necessary to develop an EPG
which enhances the contents and usability of the paper-based PSP guide.

In this paper, we describe a PSP supporting tool, named Jasmine, which have been
developed to address the issues above. Aiming at supporting personal process and
quality management, the Jasmine provides capabilities to collect reliable data auto-
matically and analyze the collected data. It also provides an EPG for the PSP guide
for easy access, modification and addition of information.

The rest of this paper is organized as follows. The next section gives a short over-
view of sensor-based automated data collection, an EPG and an ER. This is followed
by the description of the Jasmine’s architecture and salient features. Section 4 pre-
sents a comparison with existing PSP supporting tools, and section 5 concludes the
paper and describes future works.

2 Background

2.1 Sensor-Based Automated Data Collection

To reduce the high overhead and context-switching in manual data collection, tools
like Hackystat [2, 9], PROM [12] have been developed. They collect automatically
the PSP data and provide various analyses on the collected data. These tools do not
require any efforts of developers in data collection, except in installation and configu-
ration of sensors. Sensors, which are attached to development-related tools such as
Eclipse, Microsoft Office, and JBuilder, are central components for automatic data
collection. A sensor collects unobtrusively low-level data (e.g., information on files
that developers are editing, results of unit test executions) by monitoring application-
generated events of a development-related tool. Then, it sends the low-level data to a
server where the data are stored and analyzed.

Although Hackystat and PROM collect the PSP data automatically, all necessary
data can not be collected automatically and the collected data do not have all

 Jasmine: A PSP Supporting Tool 75

necessary information. For example, the time data collected automatically are associ-
ated with modification activity of software artifacts such as source files and design
documents. In this way time spent on implementation or design activity can be auto-
matically collected, but time spent on other activities (e.g., meeting, design review)
can not be collected because not all important developer activities involve modifica-
tion of software artifacts. Also, it is hard to identify which phase automatically
collected time data are spent on. Defect data are automatically collected by sensors
attached to unit testing mechanism such as JUnit or to bug reporting systems such as
Bugzilla. However, there is no way to automatically collect defects in design/design
review/code review phases where developers manually find defects, and automati-
cally collected defect data do not have all information such as the time spent on
finding and fixing the defect, the phase when it was injected, and its defect type.

2.2 EPG and ER

A process guide is a reference document to help process participants understand and
execute a given process, providing guidance of the process and other useful informa-
tion [8]. Basic information of process guides are details regarding activities, artifacts,
roles, and relationships between them. Process guides are necessary for software proc-
ess improvements where process knowledge transfer is crucial. Process guides tradi-
tionally were offered in a paper form, but it is said that they are not useful in their
contents and layouts [8]. It is hard to navigate and search easily process information
and to put related information together (e.g., an activity and its input and output arti-
facts) in paper-based process guides, because its layout is linear and static. Also, it is
difficult to modify existing information or add new process information because it
requires publishing a new edition of its process handbook.

These problems of paper-based process guides can be mitigated by an EPG which
provides a process guide using the web technology [5, 8]. However, simply providing
a process guide in forms such as PDF, Microsoft Word, or other electronic formats or
converting the contents of a process guide into HTML is not treated as an EPG. In [8],
a set of basic requirements are proposed which an EPG should meet.

• An EPG should provide all information contained in a good paper process guide.
• It is recommended that each web page contain so small manageable unit that

process participants can easily understand and digest.
• An EPG should provide hyper-links, a graphical overview, and hierarchical ac-

tivity decompositions for flexible navigation and easy access. Also, related in-
formation such as an activity and its associated artifacts should be linked
together using hyper-links.

• All web pages should have the same basic structure in order to facilitate the
usage.

Beyond the basic requirements above, an EPG can contain additional process-
related information such as examples of a document, personal annotation, or discus-
sion, which leads to more general knowledge and experience management. As a result
it is recommended to integrate an EPG with an ER [7]. An ER is a system which is
used to collect, structure, and reuse key management and development experience,
and to make it quickly and easily accessible to users [6]. An ER plays a crucial role in

76 H. Shin, H.-J. Choi, and J. Baik

knowledge and experience management where past knowledge and experience is seen
as resources to solve today’s problems.

Some works have been done to integrate an EPG with an ER. In [4, 7], a successful
implementation of coupling an EPG with an ER in a small organization is presented.
In the combined tool, an experience entity is attached to its related process element
for easy access to a large number of collected experience data. The idea to structure
experience data to related process elements is also supported by [6], which proposes
that a good experience repository should be organized to its related process.

3 High-Level Architecture and Main Features of Jasmine

In this section, we describe the high-level architecture and main features of the Jas-
mine, which consists of two sub-systems, PPMT (Personal Process Management
Tool) and PSPG/ER (PSP Guide/Experience Repository) as shown in Fig. 1. PPMT
supports project planning, earned value tracking, and quality management by facilitat-
ing data collection and analyses. It automates large parts of data collection to reduce
the high overhead and context switching. It also provides various data analyses in
forms of charts, graphs, or tables. In PSPG/ER, the EPG provides the PSP process
guide in the web and the ER is used to store and share development experience which
can be linked to the EPG contents.

Project
data

PPMT Client
Sensor

Sensor

Web Browser

Web Browser
Process

elements,
Experience

PPMT Server

PSPG/ER

Artifacts,
Analysis
results

Sensor data

Manual data,
plan data

Analysis
results

Experience

PSP Guide

Application

Application

PPMT

PSPG/ER

Fig. 1. Jasmine Architecture

3.1 PPMT

PPMT is designed using a client-server architecture, as illustrated in Fig. 1, in which
the client consists of sensors developed for automated data collection. The server
provides all functionalities except automated data collection. It was implemented as a
web application which interacts with users through a web browser. The main compo-
nents of PPMT are as follows.

• Sensor: It is attached to a development-related application. It collects automati-
cally data by monitoring the application and then sends the data to the PPMT
Client.

 Jasmine: A PSP Supporting Tool 77

• PPMT Client: The main functionality of the PPMT Client is to receive sensor
data from the sensors and to send them to the PPMT Server. It plays a temporary
storage for collected sensor data when it is not connected to the server, and
sends them to the server when the connection to the server is re-established. If
necessary, it can preprocess sensor data before sending them to the PPMT
Server.

• PPMT Server: It provides most of functionalities for PPMT: manual data re-
cording, data storage, data analyses, earned value calculation, and users/projects
administration. The implementation is based on Java technologies (such as Java
Servlet, JSP, Java Beans, and JDBC), and on Apache Tomcat to execute Java
Servlets and JSP.

• Database: It stores the collected PSP data from sensors and manual recording
such as time and defect logs, task and schedule plan data, and information on us-
ers/projects. MySQL is used for the database implementation.

XML is used to send and receive sensor data among sensors, the PPMT Client, and
the server. Its language-independent characteristic simplifies sensor data transmission
because sensors are implemented using various programming languages. The main
features of PPMT are presented below.

Sensor-based automated data collection. To facilitate recording time, defects, and
software size, PPMT provides a sensor-based automated data collection mechanism
like Hackystat, PROM. Time and defect data collected automatically are recorded in
the time and defect log respectively, which allows modification and insertion of the
data when necessary.

By monitoring software artifacts or tools, time spent on design, coding, review, and
testing can be collected automatically. The current version of the Jasmine collects
automatically time spent on: source code modification by monitoring continuously
source files’ size; manual testing of windows applications and web applications by
monitoring mouse or key events occurred in the target application. An Eclipse sensor
tracks Java source code modification and manual testing of a windows application
executed in Eclipse. Testing web applications using Internet Explorer is tracked by an
IE sensor. A set of consecutive time data is stored as an item in the time log.

Failed unit tests, bugs, compile errors and so on can be automatically collected as
defects. The Jasmine collects automatically failed unit tests, compile errors, and run-
time errors, each of which is stored as a defect in the defect log as shown in Fig. 2.

Table 1. Defect information of failed unit tests, compile errors, and runtime errors

 Failed unit tests Compile errors Runtime errors
Remove phase “Test” “Compile” “Test”
Description The stack trace of

the exception
The description of
the syntax error

The stack track of
the exception

Defect type The exception type “Syntax” The exception type
Found date (automatic) (automatic) (automatic)
Inject phase (manual) (manual) (manual)
Fix time (manual) (manual) (manual)

78 H. Shin, H.-J. Choi, and J. Baik

Fig. 2. Defect log

The Eclipse sensor collects the results of unit tests executed by JUnit, Java compile
errors, and Java exceptions. As described in Table 1, information on removal phase,
description, defect type, and found date are automatically recorded.

Software size can be automatically collected as lines of code (LOC) measured by a
line counting tool. The current implementation collects LOC measured by LOCC [16].

Support for planning and earned value tracking. Developers should make a de-
tailed plan in the planning phase and track the progress with the earned value. In order
to assist the project planning and tracking, PPMT provides forms to prepare the stan-
dard task and schedule planning templates, and automatically calculates the earned
value of all planned tasks using planned data that a developer enters and actual data
calculated from the recorded time log.

Data analyses and report generation. PPMT provides various analyses over the
collected data in forms of charts or tables. It reports a summary of analyses results.
Available analyses include trend charts which show the trend of data over time and an
earned value chart which displays the planed value, the earned value, and the predicted
earned value over time. It also provides Pareto charts for defect analysis and quality
measures such as process yield, A/FR (Appraisal to Failure Ratio), and phase ratio.
Also, it can generate a weekly report which summarizes project data during a given
week and a project report which summarizes project data during the whole period.

3.2 PSPG/ER

The main elements provided by PSPG are the PSP activities (e.g., planning, design,
and design review), artifacts (e.g., task and schedule plan, project plan summary), and

 Jasmine: A PSP Supporting Tool 79

the PSP processes (e.g., PSP0, PSP0.1). The PSPG/ER homepage provides a single
point access to the PSP processes. A number of activity and artifact pages provide the
guides of the PSP activities and artifacts, respectively. Every activity page consists of
three frames as shown in Fig. 3: a navigation bar, a diagrammatic process flow, and a
description section. The navigation bar consistently maintained in all of pages dis-
plays the current position. The diagrammatic process flow shows a flow of activities
highlighting the selected activity and supports fast navigation to other activities. The
description section contains the description of the selected activity, links to its related
artifact pages, and links to experience data associated to it. Each artifact page consists
of three frames as shown in Fig. 4: a navigation bar, a list of artifacts, and a descrip-
tion section. The list in the left frame contains a list of all the artifacts which must be
produced in the selected PSP process. The description section includes the description
of the selected artifact, its templates, and links to experience data related to it.

The ER enables developers to collect development experiences gained from previ-
ous projects by following the PSP process and to share them among team members. To
provide easy access to a number of collected experiences, they are structured according
to relevant process elements. That is, developers should insert an experience data to its
related activity or artifact page. For example, a document example should be linked to
its related artifact page. Experience data are categorized into example (only available in
artifact pages), generic experience, and discussion. In the example category, examples
of an artifact are provided in forms of files such as PDF, Microsoft Word, or other file
formats which can be downloable, or HTML pages which are generated in PPMT. The
generic experience category can include any helpful information such as lessons
learned, code fragments, and links to useful web pages. The discussion category allows
developers to discuss process elements with other developers.

Fig. 3. An example of an activity page

80 H. Shin, H.-J. Choi, and J. Baik

Fig. 4. An example of an artifact page

3.3 Interaction Between PPMT and PSPG/ER

One of main features in PSPG/ER is to store examples of artifacts such as time logs,
defect logs, and task/schedule plan. Examples can be stored in a HTML format which
is produced in PPMT. Developers can store their artifacts such as time/defect logs and
task/schedule plan in an example category of a relevant artifact and their analyses
results such as charts, tables, and reports in any experience category. This feature
would make it easy to store development experience. Another way of interaction is to
provide links to relevant pages. For example, the time log artifact page has a link to
the time recording form of PPMT, and in reverse the form contains a link to the arti-
fact page of PSPG/ER. This feature would allow developers to access easily relevant
process information.

4 Comparative Analysis of Related Tools

Several PSP support tools have been developed such as Process Dashboard [11],
Hackystat [2, 9], and PSPA [10] to help automatic data collection and analyses.
Among those tools, Hackystat provides the most similar functionalities to the Jasmine
in that both tools provide sensor-based automated data collection. The primary differ-
ence between the Jasmine and Hackystat lies in the goal that each aims for. Hackystat
is a tool for data collection and analyses rather than a PSP supporting tool since it
focuses on only automated data collection and analyses. Therefore, Hackystat does
not support the other PSP activities such as planning, plan tracking, and estimation. It
also provides the limited data analysis capabilities. This insufficiency of Hackystat is
caused by not supporting manual data recording and not collecting automatically all
necessary information of the PSP data.

 Jasmine: A PSP Supporting Tool 81

Table 2. Comparison of sensor-based automated data collection

Data Jasmine Hackystat
Time spent on
source modification

Eclipse Eclipse, Visual Studio,
JBuilder, IntelliJ Idea

Time spent on
modification of
other documents

X Microsoft Office,
OpenOffice, Emacs

Time spent on code
review

X Jupiter

Time

Time spent on
manual testing

Internet Explorer (for
web application testing),
Eclipse (for windows
application testing)

X

Failed unit tests JUnit JUnit, CPPUnit
Compile errors Eclipse X
Runtime errors Eclipse X

Defect

Post-release bugs X Bugzilla, Jira

On the other hand, the Jasmine aims for supporting the whole PSP activities. In the
Jasmine, the automatically collected time and defect data are recorded in the time and
defect log respectively in order to allow developers to modify the data or insert neces-
sary information to the data, which enables more various data analyses compared to
Hackystat. Also, it provides an EPG for the PSP guide incorporating with an ER.

In a comparison of sensor-based automated data collection, while currently the
Jasmine does not support as many development-related tools as Hackystat does, it
collects automatically time spent on manual testing, compile and runtime errors which
Hackystat does not collect, as shown in Table 2. The Jasmine would be easily ex-
tended to support various tools by reusing the Hackystat sensors, since Hackystat has
been developed as an open source.

5 Conclusion and Future Work

This paper has described the Jasmine developed to help developers perform the PSP.
The Jasmine not only automates large parts of data collection to mitigate the problems
of manual data recording, but also supports planning and plan tracking. It also pro-
vides various kinds of data analyses. These features help developers identify process
deficiencies, make a process improvement plan to remove the identified deficiencies,
and make a reliable estimate on effort and quality for more effective and efficient
process management. Moreover, the Jasmine includes an EPG to allow easy naviga-
tion of the PSP process elements and an ER to allow storing and sharing additional
process-related information. This integrated EPG and ER would help developers un-
derstand and perform the PSP more effectively. A number of collected experiences
would be used as resources to solve problems that they can run up against in the PSP
process.

82 H. Shin, H.-J. Choi, and J. Baik

This work has been done as a first step of the project that aims to develop a
TSP/PSP supporting tool. TSP (Team Software Process) support is planned as one of
future works, which includes providing automated data collection and analyses for
team data and supporting team planning process and plan tracking, in order to help
developers as well as team managers follow the TSP. Also, the sensor-based auto-
mated data collection and analyses will be extended continuously with more features.
New sensors for various development-related tools (e.g., Visual Studio, Microsoft
Office) and new sensor data types (e.g., test coverage, post-release bugs, and code
quality metrics) will be developed. We will also provide diverse data analyses to
facilitate identification of process deficiencies and product’s quality problems. Fur-
ther, Six Sigma analysis techniques such as control charts, regression analyses will be
integrated to help systematic process control. Finally, to improve and extend the tool
based on real usage, we will apply this tool to student projects in a class or industrial
projects.

Acknowledgement. This research was supported by the MIC(Ministry of Information
and Communication), Korea, under the ITRC(Information Technology Research
Center) support program supervised by the IITA(Institute of Information Technology
Advancement) (IITA-2006-(C1090-0603-0032)).

References

1. W. S. Humphrey. PSP(sm): A Self-Improvement Process for Software Engineers, SEI Se-
ries in Software Engineering, Addison-Wesley Professional, 2005

2. P. M. Johnson, H. B. Kou, J. M. Agustin, C. Chan, C. A. Moore, J. Miglani, S. Zhen, and
W. E. Doane. Beyond the personal software process: Metrics collection and analysis for
the differently disciplined. In Proceedings of the 2003 International Conference on Soft-
ware Engineering, Portland, Oregon, May 2003.

3. Disney, A. & Johnson, P. Investigating Data Quality Problems in the PSP, Sixth Interna-
tional Symposium on the Foundations of Software Engineering (SIGSOFT'98), Orlando,
FL., November, 1998.

4. Felicia Kurniawati, Ross Jeffery. The Long-term Effects of an EPG/ER in a Small Soft-
ware Organisation, 2004 Australian Software Engineering Conference.

5. L. Scott, L. Carvalho, R. Jeffery, J. D’Ambra and U. Becker-Kornstaedt, “Understanding
the use of an Electronic. Process Guide,” Information and Software Technology 44. (10),
2002, pp. 601-616.

6. Kurt Schneider, Jan-Peter von Hunnius, "Effective Experience Repositories for Software
Engineering," icse, p. 534, 25th International Conference on Software Engineering
(ICSE'03), 2003.

7. Louise Scott, Lucila Carvalho, Ross Jeffery, "A Process-Centred Experience Repository
for a Small Software Organisation," apsec, p. 603, Ninth Asia-Pacific Software Engineer-
ing Conference (APSEC'02), 2002.

8. M. Kellner, U. Becker-Kornstaedt, W. Riddle, J. Tomal, M. Verlage, “Process guides: ef-
fective guidance for process participants,” in: Proc. of the Fifth International Conference
on the Software Process, Chicago, IL, USA, June 1998, ISPA Press, 1998, pp. 11-25.

 Jasmine: A PSP Supporting Tool 83

9. Johnson, P.M.; Hongbing Kou; Agustin, J.M.; Qin Zhang; Kagawa, A.; Yamashita, T.,
"Practical automated process and product metric collection and analysis in a classroom set-
ting: lessons learned from Hackystat-UH," International Symposium on Empirical Soft-
ware Engineering, 2004.

10. Raymund Sison, David Diaz, Eliska Lam, Dennis Navarro, Jessica Navarro, "Personal
Software Process (PSP) Assistant," apsec, pp. 687-696, 12th Asia-Pacific Software Engi-
neering Conference (APSEC'05), 2005.

11. Process Dashboard, http://processdash.sourceforge.net/
12. Sillitti, A.; Janes, A.; Succi, G.; Vernazza, T., "Collecting, integrating and analyzing soft-

ware metrics and personal software process data," Euromicro Conference, 2003. Proceed-
ings. 29th , vol., no.pp. 336- 342, 1-6 Sept. 2003.

13. Pekka Abrahamsson, Karlheinz Kautz, “The Personal Software Process: Experiences from
Denmark”, EUROMICRO 2002: 367-375.

14. Lutz Prechelt, Barbara Unger, "An Experiment Measuring the Effects of Personal Soft-
ware Process (PSP) Training," IEEE Transactions on Software Engineering,
vol. 27, no. 5, pp. 465-472, May, 2001.

15. Hayes W., and J. Over. The Personal Software Process (PSP): An Empirical Study of the
Impact of PSP on Individual Engineers, Technical Report SEI-97-TR-001, December
1997.

16. LOCC, http://csdl.ics.hawaii.edu/Tools/LOCC/

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 84–95, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Tool to Create Process-Agents for OEC-SPM from
Historical Project Data

Lei Zhang 1,2, Qing Wang1, Junchao Xiao1,2, Li Ruan1,2, Lizi Xie1,2, and Mingshu Li1,3

1 Laboratory for Internet Software Technologies, Institute of Software,
The Chinese Academy of Sciences, Beijing 100080, China

{zhanglei, wq, xiaojunchao, ruanli, xielizi,
mingshu}@itechs.iscas.ac.cn

http://www.cnsqa.com
2 Graduate University of Chinese Academy of Sciences, Beijing 100039, China

3 Key Laboratory for Computer Science, The Chinese Academy of Sciences
Beijing 100080, China

Abstract. Software processes are highly people-dependent and they relay on
the capabilities of a group of developers and their creative works. Therefore an
Organization-Entity capability based software process modeling method
OEC-SPM was proposed to modeling the software process by adopting Proc-
ess-Agent (PA) as key element. Since the OEC-SPM needs a mass of PAs to
perform precise modeling but then the current process of creating PAs is ineffi-
cient and people-dependent, this paper presents a tool to create the PAs for
OEC-SPM automatically from the Historical Project Data (HPD). The paper
makes an overview of the PA’s structure in OEC-SPM then gives the definition
of HPD. After that the paper introduces to the process of creating PAs in the
tool and illustrates the application of the tool with an example on a software
quality management system SoftPM. Finally the paper illustrates the tool’s
result and then presents the future works.

Keywords: Process-Agent, OEC-SPM, SoftPM, Knowledge Extraction.

1 Introduction

Software processes are highly people-dependent and they rely on the capabilities of a
group of developers and their creative works[1-3]. In a software organization, the
executers of the process are the Organization-Entities (OE) who has the needed capa-
bilities. These entities generally display dynamic, autonomous and active behaviors so
that the precise definition of them would seem to be a requisite in the software proc-
ess modeling[4]. Regarding that, in an Organization-Entity Capability based Software
Process Modeling method OEC-SPM[5, 6] proposed by Institute of Software, Chinese
Academy of Sciences(ISCAS), we defines the Organization-Entity that contains defi-
nite resource capabilities (goals, skills, knowledge, productivities, experiences, his-
torical data records and equipments…etc.) as Process-Agent(PA)[7], with the PAs,
related software process elements would be dynamically assembled into project soft-
ware processes (project plans) via the self-adaptive reasoning mechanism of the PA.
More about OEC-SPM is given in the appendix of the paper.

 A Tool to Create Process-Agents for OEC-SPM from Historical Project Data 85

OEC-SPM regards PA as the key and fundamental element of the whole method,
which implicates a demand for creating a mass of PAs accurately and efficiently.
However, the current process of creating PAs in [4-7] is not only deeply relies on
modelers’ capabilities and experiences, which is detrimental to the precision and
stability of the PAs but also makes people have to conduct complex analyses and
processing on an extremely large amount of various information of the organization
manually to take into account the complex nature of the software process (since
“software processes are software too” [8, 9], the complexity of software process is not
second to the software), which leads to a poor efficiency.

In view of that, we implement a tool to create the PAs for OEC-SPM. The tool cre-
ates PAs from the historical project data that is traditionally used for organizational
historical tracking[10] regarding to its reflecting of the organization’s real state and
capability. With the aid of the tool we can fully eliminate the affects of modelers’
personality over creating PAs, and meanwhile can significantly improve the efficiency
owing to the tool’s automation.

This paper is organized as follows. Section 2 makes an overview of the process of
OEC-SPM and then introduces to the structure of PA. Section 3 introduces the defini-
tion of HPD. Section 4 introduces to the process of creating PAs in the tool, while
section 5 illustrates the application of the tool with an example on a software quality
management system SoftPM [11]. Section 6 illustrates the tool’s result. Finally,
section 7 presents the conclusion and future work.

2 The Process of OEC-SPM and the Structure of PA

In OEC-SPM, the PAs Percept environment
actively and react automatically to the Environ-
ment Knowledge, Goals, Changed Requirements
and Constraints on the basis of particular envi-
ronment states, so that the they can establish the
Software Processes self-adaptively through a
negotiation-based Cooperation taking advan-
tages of their Intelligent Behaviors to achieve
the Goals. Moreover, the capabilities of the PAs
would be ceaselessly improved and optimized
based on the feedbacks from the Process Data
that is produced by the Software Processes
execution, so that the stability and the predict-
ability of the process modeling will also be progressively increased. Fig. 1 depicts the
whole process.

A PA in OEC-SPM comprises two parts: Infrastructure and Engine (Fig. 2). The
Infrastructure comprises three types of knowledge, which are: Descriptive Knowl-
edge, Process Knowledge and Experiences Library. The Engine provides an acting
mechanism for the PA, which is used to reason out the behaviors of the PA according
to the Infrastructure and the environment where the PA resides in.

Fig. 1. The Process of OEC-SPM

86 L. Zhang et al.

The three types of knowledge constituting Infrastructure determines whether the
PA has capabilities to determine what it can do, how it to do and how many resources
would be needed in order to do, in Particular:

 Descriptive Knowledge describes what the PA looks like and what it can do, it
is determined by the Process Knowledge and the Experiences Library of the PA.

 Process Knowledge describes how the PA
can proceed to realize its goals by means of
Process-Steps organized into defined
sequences.

 Experiences Library is constructed from the
historical data generated from the previous
executions of the steps by the PA. It can be
used to estimate how many resources are
likely to be required in order to achieve goals.

In a PA, Infrastructure lays all the foundations
of the PA’s behaviors thus if we have established
the Infrastructure we have created the PA already.
In the Infrastructure, Process Knowledge provides an underlying determination of the
goals that can be realized by the PA and the ways by which the PA will attempt to
achieve the goals. Therefore the establishing of the Process Knowledge is a founda-
tion that acts as an essential prerequisite to establish the Descriptive Knowledge and
Experiences Library. Taking into account its fundamentality, we employ the estab-
lishing of the Process Knowledge as a vehicle to illustrate the creating of the PAs in
this paper. The establishing of the Descriptive Knowledge and Experiences Library
will not be discussed here.

Process Knowledge is captured as a group of Process-Steps that are the abstract
representation of the PA’s tasks, which brings PA a particular knowledge level. We
define Process Knowledge as PK= {st1, st2, …, stn}. Each Process-Step (PS) sti in PK
is an 8-tuple, sti = (SIDi, SDi, Ri, SCRMi, IPi, OPi, IMPi, PRIi), here:

(1) SIDi is the identification of the Process-Step;
(2) SDi is the form of natural language, informal, descriptive words of the PS;
(3) Ri is the role being played by the PA while executing the PS, e.g., if the type

of the PS is review, then Ri is “QA”.
(4) SCRMi is the PS’s control rule model. It comprises pre-conditions and post-

conditions, such as constraint specifications on the process elements (e.g. the
existence of artifacts or resource constraints etc.) The PS can be executed only
if all preconditions are satisfied, and the PS can be successfully completed on-
ly if all postconditions are satisfied; thus the SCRMi controls the behaviors of
the PS and conditions under which it will be executed.

(5) IPi is PS’s input parameters, such as the artifacts needed for executing the PS;
(6) OPi is PS’s output parameters, such as the artifacts produced by the PS’s

execution;
(7) IMPi describes the way the PS is implemented. A PS can be directly imple-

mented by PA (DIRECT), or assigned to other PAs as a cooperative goal
(SUBPROCESS).

Process-Agent

Engine

Infrastructure

Perceptor

Reactor

Reasoning Engine

Enactment Engine

Descriptive
Knowledge

Process
Knowledge

Experience
Library

Learning Engine

Fig. 2. The Structure of a PA

 A Tool to Create Process-Agents for OEC-SPM from Historical Project Data 87

3 The Definition of HPD

HPD is the data relating to the projects that now are already accomplished and are
checked and accepted. HPD can come from various sources, in this paper, we focus
on HPD that is acquired from the software systems that integrate software project
management facilities (we call this kind of system the SPMS) for the advantage that
the SPMSs can provide abundant information e.g. project information, task informa-
tion, human information…etc we need. Works on making use of other types of
sources can refer to [12], [13] and so on.

According to our surveys on various SPMSs, we found that the structures of the data
about software projects in these systems are generally displayed similar. Therefore we
define a common structure of the HPD by a series of common objects and relation-
ships generalized from the concrete SPMSs, so that we can express the universality of
the SPMS easily. Fig. 3 depicts the structure. In the structure,

• Project represents the character of the project e.g. the project name and other
explanatory information.

• Task represents the task information in-
cluding

(1) Name. The name of the Task.
(2) Description. The description of the

Task.
(3) Start Time. The actual start time of

the Task.
(4) End Time. The actual end time of

the Task.
(5) Type. The type of the Task, which is

a number that represents the con-
crete Task types (e.g. requirement
analysis, software implementation,
testing, quality assurance, process
definition…etc.). If two Tasks have
the same Type, we call the two tasks are similar tasks

(6) Input Artifacts. The artifacts that are needed for performing the Task.
(7) Work Products. The products produced by the Task execution.
(8) Implementation. The implementation style of the Task (DIRECT or

Sub_Process), which is a kind of the intermediate information derived
from the creation of PAs. It will be explained with the details in
section 5.2

(9) Order. The order of the Task, it is a number derived from the time in-
formation (Start Time & End Time) of the Project context. That is, in a
same Project, if a Task holds a smaller Order, it will always begin ear-
lier than the Tasks that hold bigger orders.

(10) Kind. The Kind of the Task, which can be determined by the time se-
quence of the Task’s children. Particularly, its value is “Parnell” if the
Task has children with execution time periods overlapped each other
(can determined by the Start Time and the End Time of the children

Name

Project

Name
Start Time
End Time
Type
Input Artifacts
Work Products
Implementation
Kind

Task

Name

Human Resource

Name

Role

1

*

*

*

**

*

*

* *

…

…

…

…

Fig. 3. The Structure of HPD

88 L. Zhang et al.

Tasks), or its value is “Sequential”. Besides, the value can also be ma-
nually assigned.

• Human Resource represents the human resources that are involved in the Pro-
jects and the Tasks.

• Role represents the roles defined by the SPMS. It could be QA, SEPG, Soft-
ware Engineer, Senior Manager or other kind of roles relating to the project.

• Relationship between Project and Tasks indicates the Tasks that belong to
Project.

• Relationship between Tasks indicates the hierarchy of the Tasks e.g. parent
task, children tasks, left brother task, right brother task…etc.

• Relationship between Project and Human Resources indicates the Human
Resources who participate in Project.

• Relationship between Task and Human Resources indicates the Human
Resources who perform Tasks.

• Relationship between Role and Human Resources indicates the role that
Human Resources belonging to.

• Relationship between Task and Roles indicates the roles that perform Tasks.

4 The Process of Creating PAs in the Tool

The process of creating PAs in the tool is constituted by two sequential phases: 1.
Generating HPD from the concrete SPMSs; 2. Creating PAs from the HPD. Fig. 4
depicts the whole process:

Phase 1. Generating HPD
from the Concrete SPMSs. In
this phase, the tool selects the
historical data from the SPMSs
and then converts the data into
the objects and relationships of
HPD. Processes in this phase

are data source-dependent.
Phase 2. Creating PAs from the HPD. In this phase, the tool creates PA from the
HPD generated by Phase 1 via five steps (Fig. 5), which are completely data source-
independent:

Step 1. Dividing HPD into groups by the Human Resources and making sure each HPD
group contains all the HPD relating to a Human Resource. This is because only all HPD
bound up with a Human Resource can implicate his/her capabilities comprehensively,
which also facilitates the follow-up processes that are human-centered.

Fig. 4. The Process Overview

Divide HPD
into Groups

Step 1.

Determine
Participation
Relationships

Step 2.

Merge Similar
Tasks & Build

Task Trees

Step 3.

Merge Identical
Task Trees

Step 4.

Create Process-
Agents by Task

Trees

Step 5.

 Process-AgentsHPD

HPDData in SPMS

 Process-Agents

Generating HPD Creating PAs

Phase 1 Phase 2

Fig. 5. The Five Steps to Create PAs from the HPD

 A Tool to Create Process-Agents for OEC-SPM from Historical Project Data 89

Step 2. Determining the relationships between the Human Resources and the Tasks
in each HPD group, making it clear in which Tasks the human has actually partici-
pated and in which didn’t. The objectivity of the step is to find out what Tasks can
be performed by the Human Resource itself and, what Tasks can be performed only
by other Human Resources, so that we are able to explicate the coordination rela-
tionships between Human Resources.
Step 3. Merging similar Tasks that belong to different Projects in each HPD group,
and constructing all the Tasks in the HPD group into a Task tree. Essentially, the
similar Tasks implicate the same type of PS, so the Tasks need to be merged in or-
der NOT to result in redundant PSs creations. Besides, PK is represented by a PS
tree, hence constructing the Tasks into a Task tree can bring an ease to explicate the
relationships between Tasks and PSs.
Step 4. Merging identical Task trees in different HPD groups. Taking into account
that the identical Tasks tree in different HPD groups implicate a same PK, the iden-
tical Task trees need to be merged in order to prevent creating different PAs with a
same PK (according to the definitions of PA in OEC-SPM, different PAs in a soft-
ware organization are representing different Organizational-Entities who have dif-
ferent capabilities on the basis of different PK, so that it is not appropriate to allow
different PAs to have the same PK in one software organization).
Step 5. Create PAs by the Task trees.

Details of the process will be illustrated in the next section by an example.

5 The Application of the Tool

In this section we present an example of applying the tool to create the PAs from the
historical data of a software quality management system SoftPM.

SoftPM is a commercial platform for software quality management that provides
comprehensive and effective supports for project management, process management
and quality management in coordinated software development process. It has been
applied in many areas and organizations in China, such as the national software indus-
try parks, 8631 software incubators and more than 200 software companies. SoftPM
helps them define the standard and project’s processes, establish and maintain the
process assets library, perform project management and quality assurance tasks, col-
lect the data for measurement, measure and evaluate the status of process performing
and so on. The data of historical projects in SoftPM is stored in a database containing
a series of data-tables and foreign-keys. The tool creates PAs by generating HPD
from the database and then creating PAs from the HPD, the details of the process are
given below.

5.1 Generating HPD from the Database of SoftPM

In this phase, the tool examines all the historical data in the database, based on which
it generates HPD according to the data mappings depicted in Table1.

1 863 Program, National Hi-Tech Research and Development Plan of China.

90 L. Zhang et al.

Table 1. Data Mappings between SoftPM Database and HPD (Of all the mappings, only the
portion of the mappings that is necessary for establishing the Process Knowledge of the PAs are
displayed here)

Data-Tables and Foreign-Keys
in SoftPM Database Objects and Relationships in HPD

1 project_info Project

2 task_info

Name

Task

Description
Start Time
End Time

Input Artifacts
Work Products

3
Tasks_belong_to_SpProcess

Type Tasks_belong_to_SpActivity
Tasks_belong_to_AcType

4
Parent_Task

Kind task_member
task_info

5 bs_employee Human Resource
6 Task_in_Project Relationship between Project and Tasks

7 Parent_Task Relationship between Tasks
task_info

8 project_member Relationship between Project and Human
Resources

9 task_member Relationship between Task and Human
Resources

10 user_task_group

Role
Relationship between Role and Human

Resources
Relationship between Task and Roles

Each “→” in Table1 explicates that the value of the object(s) and relationship(s) in
the HPD are derived from the data-table(s) and foreign-key(s) in the SoftPM database.

5.2 Creating PAs from the HPD

In this phase, the tool creates PAs from the HPD generated by the primary phase via
five steps (as mentioned in section 4).

Step 1. Dividing HPD into groups by the Human Resources.
(1) Creates a dataset DS for each Human Resource in the HPD, and we call

the Human Resource is the Human Resource of the DS. Each DS contains
the data relating to all the projects that the Human Resource was partici-
pated in as well as all the Tasks that belong to the projects. A DS would be
null if relevant Human Resource did not participate in any projects.

(2) Removes all DSs that are null.

 A Tool to Create Process-Agents for OEC-SPM from Historical Project Data 91

(3) Set the Implementation of Tasks to “DIRECT” in all the DSs.
After the step is accomplished, each DS would contain a set of Task trees acquired
from the SoftPM database and each Task trees would belong to the different projects.
Step 2. Determining the participation relationships between Human Resources and
Tasks in each DS. In this step, the tool traverses each Task in each DS, if a Task is
not a Task participated by the Human Resource of the DS, the tool set the Imple-
mentation of the Task to “Sub_Process”.
Step 3. Merging similar tasks that belong to different projects in each DS, and con-
struct the Tasks into a Task Tree.

(1) Traverses each Task deep firstly in each DS, compares each Task with
other Tasks in the same DS, if found two Tasks that belong to different
projects are similar tasks, merges the tow Tasks by the algorithm given
below.
a) Reserves the Task t that is at the deeper level of the Task tree (the

level of a Task in Task tree can be determined by the Relationship
between Tasks).

b) Create a copied Task tt containing all information of t and create a
copied Task tt’ containing all information of the unreserved Task t’.

c) Remove all the children Tasks of t.
d) Set the Kind of t to “Choice”.
e) Set the parent Task of tt and tt’ to t.
f) Set the Work Products of t to the union of the Work Products of tt

and tt’.
g) Set the Roles of t to the union of the Roles of tt and tt’.
h) Removes t’.

(2) Repeats (1) until no similar Tasks can be found in the same DS.
(3) Check each DS, if the tasks in a DS are not yet constructed into one Task

tree, create a new root Task rt for the DS and then.
a) Set the Human Resources of rt to the union of the Human Resources

of all the original root Task of the original task trees in the DS.
b) Set the Work Products of rt to the union of the Work Products of all

the original root Task of the original task trees in the DS.
c) Set the Roles of rt to the union of the Roles of all the original root

Task of the original task trees in the DS.
After step 3 is accomplished, all the Tasks in each DS would be constructed into
Task trees.
Step 4. Merging identical task trees in different DSs.
Primarily we give two definitions before introducing to the step.

DEFINITION 1. Supposes T1 and T2 are two Task trees, ti is a Task in T1, the level of
ti in T1 is n; tj is a Task in T2, the level of tj in T2 is m. For any ti, if we can always find
a unique tj that is the similar Task of ti which makes ti.n= tj.m, ti.Order= tj. Order and
for any tj we can also find a unique ti that is the similar Task of tj, making tj.n= ti.m,
tj.Order= ti.Order, we call T1 and T2 are the identical Task trees.

DEFINITION 2. Supposes T1 and T2 are the identical Task trees, ti is a Task in T1, the
level of ti in T1 is n; tj is a Task in T2, the level of tj in T2 is m. If ti and tj are the similar
Tasks and ti.n= tj.m, ti.Order= tj.Order, we call the tj is the corresponding task of ti.

92 L. Zhang et al.

Now we can present the processes in the step.
(1) Select arbitrary tow DSs from all the DSs, if the Task trees in the two DSs

are the identical Task trees, perform the processing as follow
a) Arbitrarily reserves a DS, for each task ti in the reserved DS, find the

corresponding task ti in the unreserved DS and then
i. Set the Human Resources of ti to the union of the Human Re-

sources of ti and tj.
ii. Set the Work Products of ti to the union of the Work Products of

ti and tj.
iii. Set the Roles of ti to the union of the Roles of ti and tj.

b) Remove the unreserved DS.
(2) Repeat (1) until NO identical Task tree existing in different DSs.

Step 5. Creating PAs by the final Task trees.
(1) Create a PA with an automatically generated PA name for each Task tree.
(2) Create a PS tree for the PA with the same hierarchy with the Task tree,

making that each PS in the PS tress corresponds to a Task in the Task
tree.

(3) Traverses the PSs, for each PSs and for its corresponding Task t
a) Set the value of SID of s to a generated unique id.
b) Set the value of SD of s to the Description of the t.
c) Determined the SCRM of s by the hierarchy information and se-

quential information of t in the DS, that is
 Make the hierarchy context of s consist with the hierarchy con-

text of t.
 Determine the sequence context of s by the time sequence con-

text of t.
(4) Set the values of IP of s to the Input Artifacts of t.
(5) Set the values of OP of s to the Work Products of t.
(6) Set the value of IMP of s to the Implementation of t.

6 The Result of the Tool

We have applied the tool to a domestic
software organization (due to confiden-
tial reasons, the name of the organization
is not introduced here) at the CMMI
Level 4, the organization has being
adopted SoftPM as SPMS for 6 years and
has accumulated a large amount of valu-
able historical data. The tool has created
53 PAs (Fig. 6) based upon the organiza-
tion’s data and the software processes of
the organization have been represented
by the PK of these PAs as expected.

For Example, the PK of PA with
ID = 44 (Fig. 7) in the results explicates one of the requirement analyzing processes of

Fig. 6. The PAs Created by The Tool

 A Tool to Create Process-Agents for OEC-SPM from Historical Project Data 93

the organization, the PK of PA with ID = 12 (Fig. 8) explicates one of the software im-
plementation processes, the PK of PA with ID = 46 (Fig. 9) explicates one of the testing
processes, the PK of PA with ID = 35 (Fig.10) explicates one of the quality assurance
processes and, the relationships among these processes can be determined by the PK
of PA with ID = 5 (Fig.11), which produces the organizational software processes
definition.

With the PAs cre-
ated, the organization is
enabled to generate its
software processes self-
adaptively with OEC-
SPM owing to the
process assets organ-
ized in the PAs, which
will greatly improve
the predictability and
the stability of the

organization.

7 Conclusions and Future Work

The tool developed by us provides a
strong support for creating the key ele-
ment for OEC-SPM - PA by making use
of the HPD. With the aid of the tool we
significantly eliminate the dependence on
human for creating PAs and also make
the adopting of the OEC-SPM with ease
and efficiency.

However, to create PAs by the tool
needs a complete database of projects is
managed at the present, taking into ac-
count it is not always realistic to have
such a strong restriction, in the future

works we will enhance the tool with comprehensive data pre-process operations in-
cluding removing noise or outliers if appropriate, collecting the necessary information
to model or account for noise, deciding on strategies for handling missing data fields,
and accounting for time sequence information and known changes, as well as decid-
ing DBMS issues, such as data types, schema, and mapping of missing and unknown
values[14], in order to increase the tool’s usability.

Meanwhile, according to the result of the tool, although different software proc-
esses of the organization have been nicely presented by different PAs, the PK of the
PA is not cohesive enough, which means the PAs have not been perfectly aggregated
(for example, the PK in Fig. 8 represents a software implementation process. We
found it also contains a PS referring to a software testing process, which is

Fig. 7. Fig. 8. Fig. 9.

 Fig. 10. Fig. 11.

94 L. Zhang et al.

unexpected). In the future works, we will enhance the tool by employing processes of
extracting DK and EL that takes into account performance, experiences and other
aspects of the human in the software development process to recognize PAs that pre-
sent the same behavior pattern, so that we can make the knowledge and the PAs are
further aggregated.

Acknowledgments. This work is supported by the National Natural Science
Foundation of China under grant Nos. 60573082, 60473060; the National Hi-Tech
Research and Development Plan of China under Grant No. 2006AA01Z185,
2006AA01Z19B; the National Key Technologies R&D Program under Grant No.
2005BA113A01.

References

1. R. Conradi, A. Fuggetta and M. L. Jaccheri: Six Theses on Software Process Research.
Proceedings of the 6th European Workshop on Software Process Technology, 1998,
100-104

2. C. G. Gianpaolo Cugola: Software Processes: A Retrospective and a Path to the Future.
Software Process: Improvement and Practice, 4, 3, 1998, 101-123

3. R. Balzer: Keynote On "Current State and Future Perspectives of Software Process Tech-
nology". Proceedings of the 7th European Workshop on Software Process Technology,
2000,220

4. J. Xiao, L. J. Osterweil, L. Zhang, A. wise and Q. Wang: Applying Little-Jil to Describe
Process-Agent Knowledge in Softpm. SPW/ProSim 2006, Shanghai China,2006,214-221

5. X. Zhao, M. Li, Q. Wang, K. Chan and H. Leung: An Agent-Based Self-Adaptive Soft-
ware Process Model. Journal of Software, Vol. 15, No. 3, 2004, 348-359

6. X. Zhao, K. Chan and M. Li: Applying Agent Technology to Software Process Modeling
and Process-Centered Software Engineering Environment. The 20th Annual ACM Sympo-
sium on Applied Computing(SAC'05), Santa Fe, New Mexico, USA,2005,1529-1533

7. Q. Wang, J. Xiao, M. Li, M. W. Nisar, R. Yuan and L. Zhang: A Process-Agent Construc-
tion Method for Software Process Modeling in Softpm. SPW/ProSim 2006, Shanghai
China,2006,

8. L. Osterweil: Software Processes Are Software Too The 9th international conference on
Software Engineering Monterey, California, United States 1987,2-13

9. L. J. Osterweil: Software Processes Are Software Too, Revisited: An Invited Talk on the
Most Influential Paper of Icse 9. 1997,540-548

10. A. E. Hassan, R. C. Holt and A. Mockus. Proc. 1st Int’l Workshop Mining Software Re-
positories, 2004, http://msr.uwaterloo.ca/msr2004

11. Q. Wang and M. Li: Software Process Management: Practices in China. SPW 2005,
2005,317-331

12. K. A. Schneider, C. Gutwin, R. Penner and D. Paquette: Mining a Software Developer's
Local Interaction History. IEE Seminar Digests, 2004, 917, 2004, 106-110

13. D. M. German: Mining Cvs Repositories, the Softchange Experience. IEE Seminar Di-
gests, 2004, 917, 2004, 17-21

14. U. M. Fayyad, G. Piatetsky-Shapiro and P. Smyth: The Kdd Process for Extracting Useful
Knowledge from Volumes of Data. Commun. ACM, 39, 1996, 27-34

 A Tool to Create Process-Agents for OEC-SPM from Historical Project Data 95

Appendix: OEC-SPM

Organization-Entity Capability Based Software Process Modeling (OEC-SPM), which
mainly aims at the software process particularities, is a modeling method presented by
ISCAS to model standard processes. OEC-SPM defines an organizational entity that
holds certain capabilities as a Process-Agent and regards the Process-Agents as the
core elements and the basic units of the software process. Process-Agents produce the
concrete software development processes and the production processes via the proac-
tive and autonomous reasoning based upon their goals, knowledge, experiences and
capabilities under a defined environment containing project goals and constraints so
as to provide software project development with effective supports and proper deci-
sions. Owing to its full consideration of the capabilities of process executors, OEC-
SPM has the merits of producing software processes with good predictability, which
resolves the instability and the uncontrollability of the software processes.

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 96–108, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Safety Critical Software Process Improvement by
Multi-objective Optimization Algorithms

Mario Brito and John May

Safety Systems Research Centre, University of Bristol, Queen's Building,
Bristol BS8 1TR - United Kingdom

{Mario.Brito,J.May}@bristol.ac.uk

Abstract. One of the main concerns in safety critical software development is
to identify a path through the software development lifecycle that will allow the
software artefact to meet the target safety integrity level (SIL) at an acceptable
cost. In our previous work we modelled aspects of the software development
process recommended by IEC61508-3 software safety standard. In general,
there are a number of paths that one can follow in order to comply with a target
SIL. The path that one chooses to follow will undoubtedly effect the costs of the
software development. In this paper we study a series of optimization algo-
rithms that can be used to improve the software development process by
optimization of two objectives, development costs and confidence in claimable
integrity. Our analyses show that the non-dominated sorting genetic algorithm
(NSGA) is the best performing algorithm in the search for these optimal
processes.

Keywords: Software Safety standards; Bayesian belief networks, Genetic
Algorithms.

1 Introduction

The development of safety critical software is typically guided by software safety
standards such as IEC61508-3 [1]. This standard recommends the techniques to be
applied whilst developing a safety function that will monitor and control the risk
posed by the operation of the main system (e.g. this can be a railway management
system or a nuclear power station management system). The software development
process recommended by the IEC61508-3 follows the V diagram for a software life-
cycle, which is described as a collection of phases. The techniques to be applied
throughout the development lifecycle are selected based upon the safety function
target SIL, which is determined in the system hazard analysis. The SIL varies from 1
to 4 where SIL 4 is the highest integrity. For a given SIL target there is number of
combinations of techniques that can be applied in each phase of the development
lifecycle. Consequently, there are different paths that the decision maker can select in
order to develop a software product that complies with the SIL target. In previous
work we captured a part of the software development process recommended by
IEC61508-3 in a prototype Bayesian Belief Network (BBN) [2]. Throughout this

 Safety Critical Software Process Improvement 97

paper the term ‘process model’ is used when we are making reference to the BBN
representation of the software development process. Because this type of model is
executable it may also be called a simulation model. The use of BBNs injects a high
degree of transparency into the software development process, makes it easier to iden-
tify different paths of the software development lifecycle and estimate the integrity
level that one can claim if one chooses to follow a particular path. This ‘expert sys-
tem’ was designed based upon interviews with software engineers working in the
development of the IEC61508 safety standard.

In this paper we present a decision support system (DSS) that we embedded in our
expert system to expand its functionality. The DSS allows a project manager (user) to
perform cost efficiency analysis whilst complying with the target SIL. The proposed
approach has two advantages: 1) It provides support for software project risk man-
agement; and 2) It allows organizations to perform detailed self assessment of their
own process. Point 2 is important because it is common for organizations to create
their own process. However in order to certify their product they must build an argu-
ment stating that their process comply with recommendations made by the standard.
The proposed DSS will help organizations to build a more robust argument as to why
they should adopt a process (or not). It allows the project manager to choose which
process to follow to best control two key attributes software integrity and its associ-
ated development costs. The proposed DSS uses a type of Multiple Objective Evolu-
tionary Algorithms (MOEAs) called a Non-Dominated Sorting Genetic Algorithm
(NSGA) [3].

The BBN-based expert system has several input nodes. Example of such input
nodes are for instance, the experience of the development staff, the power of the tech-
niques applied, the number of project review meetings and the intensity at which the
development techniques were applied. Use of the expert system typically involves the
decision maker specifying a state for each node in a subset of the BBN nodes. There
are in total 28 input nodes for the BBN that models phase 1 of the software develop-
ment lifecycle recommended by IEC61508-3 “software requirements specification”.
Each node has on average 5 possible states. The ‘power of the formal method’ node
provides an example of a node and its states: {very poor, poor, medium, good, very
good}. Instantiation of the states of all the input nodes defines a particular ‘scenario’
or ‘path’ or ‘process’ of development, that will have an associated effectiveness (in
terms of the claimable integrity), and also associated costs.

MOEAs have the same working principles as the single objective GA [4]. The first
commonality between the two approaches is that both are based on the random crea-
tion of an initial population of possible solutions (also referred as individuals). De-
pending on the nature of the problem, the fitness of each individual is established by
seeing how well the individual maximizes or minimizes the pre-defined objective
function. The next generation of individuals is then created by manipulating the fittest
individuals of the earlier generation using mutations and crossovers. For a normal GA
algorithm there is one objective function only, whilst for a multiple objective problem
there are two or more objective functions. Thus in the presence of conflicting objec-
tives the optimization algorithm will look for a set of optimal solutions, which are
said to form the Pareto front 1.

1 The Pareto front is the set of solutions that are optimal with respect to two or more objectives.

98 M. Brito and J. May

The optimization algorithm was implemented in Visual C 6.0 and it communicates
with the expert system through the Hugin Application Interface (API) [5],[6]. In brief,
this optimization algorithm collects ‘rigid evidence’ (this is evidence relating to facts
that are fixed for a given project, that are captured in terms of specified values for
BBN input nodes and that constitutes a set of constraints for the optimisation algo-
rithm) and runs “what-if” scenarios with the uninstantiated input nodes until it finds
the most cost efficient set of values at those nodes. The algorithm can ask “what-if”
queries. For instance, if the intensity at which formal methods were applied were
increased, say from verifying a few key properties of the software requirements to
verifying all required properties. Similarly, “what-if” we increase the number of the
project review meetings? Given a set of user-specified fixed factors (constraints)
the optimization algorithm will run all possible remaining scenarios in order to find
the most cost efficient solution or set of solutions.

The remainder of the paper is organized as follows. In section 2 we give a back-
ground on the type of expert system proposed. In Section 3 we compare different
MOEAs namely, MOGA, NPGA, SPGA and NSGA in order to select the algorithm
that will support the proposed DSS. In section 4 we present examples illustrating the
application of the proposed method. Section 5 presents our analysis and conclusions.

2 The Process Model

The use of BBNs continues to progress in the field of software dependability. Re-
search projects using this approach include FASGEP, Datum, SHIP, DeVa. The
general approach for these projects uses the underlying assumption that errors are
introduced during development and models of this phenomenon will allow the project
manager to assess the level of the problem. This is important aim since if necessary,
the manager can then take preventive measures to remove errors or otherwise mitigate
against the effects of errors on system dependability [7],[8],[9],[10]. Most of these
BBNs were developed using expert opinion. Methods borrowed from social sciences
are usually applied throughout the elicitation exercise in order to reduce bias
[11],[12]. The validation of BBNs based expert systems is done by giving to the ex-
pert system unseen scenarios and seeing if its predictions match those of the human
expert. A thorough discussion of validation of a BBN based expert system is given by
Cockram [13].

A BBN is a type of graphical probabilistic model (GPM) in which nodes represent
random variables (continuous or discrete) and arrows represent causal influence that
one variable (parent node) has upon another variable (child node). The strength of the
connections between subsets of nodes is defined in condition probability tables
(CPTs). Typically, when using a BBN one inserts evidence at a node by specifying its
value; and the evidence is then propagated through the network updating the belief in
the states of the other nodes. Details about propagation algorithms for Bayesian net-
works are given in [14],[15].

The process model used in this paper is an attempt to capture part of the software
development process recommended by the IEC61508-3 software safety standard. The
model has been reviewed by experts working in the development of IEC61508-3.
The model consists of two networks; a single phase network is used to capture the set

 Safety Critical Software Process Improvement 99

of activities undertaken in each phase of the development lifecycle and a skeleton
network is used to capture the interactions between all phases of the software
development lifecycle. The single phase network is designed to be generic, in the
sense that nodes in particular positions in the graph structure are different in general,
but have the same ‘type’. Similarly, there may be a different number of nodes of a
given type in different phases [2].

The central purpose of the single phase network is to estimate the likely criticality
of outstanding errors introduced in the current phase of the software development.
This is estimated in the ‘significance of outstanding errors…’ node (for an example
see Fig. 5). This node has the following discrete states, {intolerable, undesirable,
tolerable, neglibible}. The probability distribution for this node is obtained based on
estimates for the quality of the development techniques and estimates for the quality
of the review techniques involved in the phase. The quality of development is
estimated based on the rigour at which the development techniques were applied, the
complexity of the design task, the competence of the staff involved and an
‘application factor’. The latter node is required due to the nature of IEC61508 safety
standard. The standard is meant to be adapted to diferent industrial sectors and these
may follow subtly different beliefs as regards what is considered rigourous software
development. The quality of review is estimated based on predictions for states of the
competence of the staff involved, the independence level between the staff carrying
out the review and those involved in the design, the rigour at which the review
techniques were applied and also the relevance of the review techniques for that
particular phase. Depending of the current phase of the project the relevant
verification technique might be project review meeting, code review, code walk-
through, dynamic testing, formal proof and so on. The power of a particular
verification technique for a particular phase is measured with the ‘power of the
verification technique’ node, this node has the following states: {very poor, poor,
moderate, good, very good}. The review at phase 2 is not limited to finding errors
created in that phase. It can also find errors that are relevant to phase one. More
generally, reviews at any later phase can find errors that are relevant to any earlier
phase. This creates an interesting feedback mechanism that has to be captured in the
BBN model and for this purpose we introduced the larger ‘skeleton’ network. This
network captures interaction between different phases of the software development
process, Fig. 1.

In principle, the calculation of confidence in integrity claims can be conducted at
any point in the lifecycle, for example, after just one phase has been completed. It is
then updated as subsequent phases are performed and the BBN grows dynamically to
describe the work performed. This network is used to model interactions of two types.
The first type of interaction is the one discussed above, where error finding in later
phases effects integrity claims for earlier phases. The second type of interaction is the
combination of integrity claims of consecutive phases into one overall claim. Fig. 1
presents the ‘skeleton’ network that computes the combined effects of different
phases. This skeleton estimates a probability distribution for ‘Overall integrity after
phase i’. All these nodes have the following states: {SIL1, SIL2, SIL3, SIL4}.

100 M. Brito and J. May

Fig. 1. Generic BBN Multi-Level structure for several phases of the safety software develop-
ment lifecycle

3 Meta-heuristics for Decision Support

The proposed approach is presented in Fig. 2. This diagram contains five key ele-
ments; the ‘project’ element represents the information that is known with certainty
about a specific project; these are the constraints of the project that are rigid and can-
not be changed during process optimisation. For any given set of input evidence con-
cerning a particular process, the BBN (process model) will compute the confidence
that the target SIL can be claimed. In addition our approach also makes use of a data-
base that contains the costs of adopting a given process. In summary, in order to use
this system the decision maker ‘Manager’ will first identify the project constraints;
these might be the project size, complexity or the type of application. These con-
straints will specify the states for nodes that cannot be used by the DSS for the opti-
mization of the software development process. Given the identified constraints the
optimization algorithm will run different scenarios. For each scenario the algorithm
reads the SIL claim and also the cost of the product development. The SIL probability

Overall
integrity after

phase i

Significance of outstanding
errors in phase i

Phase i overall
integrity

Quality of the development process at
phase 1, e.g. requirements

Significance of outstanding errors in
phase 1

Phase 1 overall
integrity

Quality of the development process at
phase i

Quality of verifica-
tion process of

phase i relevant to
phase i

Significance of errors found in
phase i relevant to phase 1

Quality of
verification

process of phase
i relevant to

phase 1

Size of the
verification team

Size of the
product

Complexity of the
verification task

.

.

.

.

Significance of errors found in
phase i relevant to phase i

To: Phase 2 overall
integrity

Significance of errors found
in phase i relevant to phase 2

 Safety Critical Software Process Improvement 101

Fig. 2. Framework of the general approach to risk management

distribution is computed by the BBN whereas the cost of a particular technique is read
from the database.

The proposed DSS uses a meta-heuristics optimization algorithm. Meta-heuristics
optimization algorithms provide a powerful approach for optimum search. An obvious
advantage of such algorithms is that they do not need to assess all possible solutions
of the search space in order to find a global optimum or approximate global optimum.

50%

55%

60%

65%

70%

75%

80%

85%

£2,000 £7,000 £12,000 £17,000 £22,000 £27,000 £32,000

Cost [£]

C
o
n

fi
d
en

ce
 t
h

at
 S

IL
 3

 c
an

 b
e

cl
ai

m
ed

 [
%

]

NSGA
MOGA
SPGA
NPGA

Fig. 3. Non-dominated solutions after 100 seconds running time

These algorithms have been successfuloply applied in a wide range of subjects [4].
Multi-objective Evolutionary algorithms (MOEAs) are among the most effective
multi-objective optimization algorithms. Several MOEAs have been developed in the
past ten years. Among these the MOGA, NPGA, SPGA and NSGA are considered to
be the most effective [16],[17],[18],[3] respectively. We implemented these four

 Project
Manager

SI
L

 (
%

)

Database

Cost (£)
 Process model Decision Support System

102 M. Brito and J. May

algorithms and demonstrated that for a specific set of constraints and many examples
of input evidence they all converged to the same Pareto front. We chose to implement
NSGA because this algorithm is the fastest to get to that Pareto front. The NSGA
algorithm is described in [3]. Fig. 3 illustrates the solutions found by each of the four
optimization algorithms after 100 seconds run. The NSGA managed to find the most
number of non-dominated or optimal solutions. The algorithm finds all non domi-
nated solutions found by SPGA (second best algorithm) plus 10 non-dominated solu-
tions/processes. For our particular problem the slowest algorithm is MOGA.

4 Using the Decision Support System

In this section we provide two case studies. The first study presents the case where
one intends to optimize phase one “software requirements specification” of the soft-
ware development lifecycle. The second case study presents the scenario where one
has completed phase one of the software development lifecycle and intends to opti-
mize phase 2 “software architecture specification”.

4.1 Case Study 1 - Optimization of the Software Requirements Specification
Phase

This case study analyses the software requirements specification phase of the software
development lifecycle. It is assumed that the project manager has a clear idea of the
size of the project and its complexity. The project size is ‘small’ and the complexity
of the design and verification activities was considered ‘fair’. It is also assumed that
he/she knows the number of people required for the job. The project manager now
wants to know which development techniques to apply, the required qualification of
the staff and the type of verification techniques to apply. The target node (the node
whose probability distribution we are interested in) for this case study is the ‘Phase 1
overall integrity’. We will consider two SIL targets, SIL 3 and SIL 4, the latter requir-
ing the application of more powerful techniques.

Fig. 4 presents the Pareto front obtained for this case study. Each data point
represents a process, i.e., a combination of techniques applied, the intensity at which
they were applied and also the competence of the personnel involved in the
development and in the review activities. Data point 1 in Fig. 4 represents the cost-
optimal process to follow in phase one in order to attain 83% confidence that SIL 3
can be claimed. The cost of the associated process is £2,300. In terms of techniques,
this process (or scenario) involves the application of: a powerful formal method at a
low intensity (in practice this might mean use of a formal method to provide a few
key validated system properties, or maybe just the use of formal specification without
any formal validation activities); a ‘very good’ semiformal method at a ‘low’ inten-
sity; a ‘moderate’ verification method, such as a formal design review meeting at a
‘low’ intensity; development staff with satisfactory training and moderate qualifica-
tions, but lacking in experience (i.e. ‘low’ technical knowledge and ‘low’ experience);
highly experienced verification staff (experience node was set to ‘moderate’ and tech-
nical knowledge node set to ‘good’); and a high level of independence between the
design team and the review team.

 Safety Critical Software Process Improvement 103

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

£2,000 £7,000 £12,000 £17,000 £22,000 £27,000

Costs [£]

B
el

ie
f

[%
]

SIL 3

SIL 4

[1]
[2]

[3]

Fig. 4. Non-dominated solutions after 2000 generations

If the project manager wanted to have the same level of confidence (83%) that the
software could claim SIL 4 instead of SIL 3 then he would have to follow the process
corresponding to data point 2 in Fig. 4. For this process, a ‘very good’ formal method
was applied at a ‘very high’ intensity and a ‘good’ semi-formal method at a ‘very
high’ intensity. The qualifications of the design staff are satisfactory and the experi-
ence and technical knowledge is ‘high’. The verification activities followed in this
process are identical to the verification activities followed in the process for data point
1. However the qualifications, training, experience and technical knowledge of the
personnel involved in the verification process is ‘high’. The independence level be-
tween the two teams is also ‘high’. The process present in data point 2 is similar to the
process present in data point 3. If one was to follow the process present in data point 3
then one would attain 96% confidence that SIL 3 could be claimed. On the whole the
processes in data points 1 and 2 mirror the findings presented in industrial reports.
Concerning conformance to SIL 4, both Smith and Rivett in [19],[20] respectively
argue that a formal specification should be carried out for the complete system, which
in our example is addressed by the process represented by data point [2]. For SIL 3
however the two authors hold different views; whilst Smith argues that a semi-formal
specification for the complete system, Rivett suggests that a formal specification
should be presented for merely those functions that ought to meet SIL 3. In our
example the optimal process (present in datapoint [1]) two techniques (formal and
semi-formal specification methods) are applied at a low intensity.

4.2 Case Study 2 - Optimization of the Software Architecture Design Phase

The scenario presented in this section assumes that the project has reached the start of
the ‘software architecture design’ phase. That is, a set of procedures has already been
applied in phase 1. The question we address is ‘which procedures should we now

104 M. Brito and J. May

apply in phase 2 in order to achieve compliance in the most cost efficient way?’ For
this case study we assumed that the organization that will use the software needs to
comply with SIL 3. The target node is the ‘Overall integrity after phase 2’. Fig. 5 is a
screenshot of BBN tool Hugin 6.6. This figure illustrates our interpretation of the
process model recommended by IEC61508-3 for the “software architecture specifica-
tion” phase. At the top left corner of the figure are the nodes concerning the
techniques recommended by IEC61508-3 for the software architecture specification.

Fig. 5. Hugin screenshot of the process model for the ‘Software Architecture Design’ phase of
the IEC61508 software development lifecycle

Because of the interactions discussed earlier, the answer to the question will be de-
pendent on what has happened in phase 1, in addition to the techniques available in
phase 2. The following assumptions for the development in phase 1 were made:
formal methods were applied at a ‘high’ intensity, whereas semiformal methods and
computer aided specification tools were applied at a ‘moderate’ intensity. The staff
involved in the development was also involved in the review. The competence of the
staff was ‘moderate’. This yields the following distribution for the confidence of the

 Safety Critical Software Process Improvement 105

overall SIL that can be claimed for phase one {SIL1:2.84, SIL2:12.46, SIL3:28.66,
SIL4:56.04}. This means that the probability/Belief/confidence that SIL 4 can be
claimed given the process evidence is P(SIL 4 | Process evidence) = 0.56. After phase
1 one could say with a belief (confidence) of 85% (28.66+56.04) that the software
complies with SIL 3. The optimization algorithm investigated scenarios for phase two
in order to identify those processes that maximize the belief that SIL 3 can be claimed
whilst minimizing the costs. The Pareto front obtained for this case study is presented
in Fig. 6: see the diamond data points.

The practical question that arises concerns the trade-off between integrity gain and
increase in project costs. For instance, considering the diamond data point 1 and 2, the
amount of integrity gained by following the process recommended in data point 2
perhaps does not justify the increase in costs. The main differences between the
process recommended for data point 1 and data point 2 are as follows. Concerning the
development process, for data point 2, a ‘ very good’ formal method was applied at a
‘very high’ intensity, a ‘very good’ semi-formal method was applied at a ‘very high’
intensity and a ‘very good’ computer aided specification tool was applied at a ‘very
high’ intensity, structured methods were not applied. For data point 1, a ‘very good’
formal method was applied at a ‘low’ intensity, a ‘very good’semi-formal method was
applied at a ‘low’ intensity and a ‘very good’ structured method was applied at a
‘low’ intensity. Considering the review, in both data point 1 and 2, a ‘very good’
review was applied at a ‘very high’ intensity. In addition the competence of the staff
involved in development is higher for the process followed in data point 2 than it is
for the staff involved in the process present in data point 1.

The competence of the staff involved in the process presented in data point 1 is
considered to be moderate. These factors explain the increase in costs from data point
1 to data point 2. However the difference in confidence that the product complies with
SIL 3 remains small. In this case, the reason for this is because the development in
phase 1 introduces constraints on the maximum integrity that can be claimed at later
phases. In some cases, the only way to increase the integrity claim after phase 2 is by
simulataneously increasing the integrity at phase 1 and at phase 2. Because phase 1
has been completed, the only way to increase its integrity is by finding errors in later
phases that are relevant to it (or to revisit, and therefore change the process). However
it is plausible to assume - and this is built into the model - that it is difficult to find
some errors introduced in phase 1 using techniques in phase 2, although this depends
on the nature of the error. This is why, even if one attempts to invest an extra £10k
(point 2) in phase 2, the gain in integrity is not significant.

To further illustrate this point, we considered another scenario where we intro-
duced further constraints into phase 1. For this example we considered that formal
methods were not applied at phase 1 of the software development lifecycle. The re-
maining nodes of phase 1 were populated with the same evidence as for the previous
example in this case study. This yields the following distribution for the overall integ-
rity that can be claimed for phase 1 {18.09, 20.48, 14.47, 46.96}. Given this probabil-
ity distribution, after phase 1, one can say with 61% confidence that the software
product complies with SIL 3. Again we ran the optimization algorithm in order to
optimize phase 2 so that we could find those processes that would maximize our be-
lief that SIL 3 can be claimed whilst minimizing the additional costs.

106 M. Brito and J. May

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

£0 £5,000 £10,000 £15,000 £20,000 £25,000 £30,000

Cost [£]

B
el

ie
f
th

at
 t

h
e

d
ev

el
o

p
m

en
t

p
ro

ce
ss

at

 p
h
as

e
2

co
m

p
lie

s
w

it
h
 S

IL
 3

 [
%

]
[1] [2]

[3] [4]

Fig. 6. Non-dominated solutions after 500 generations

The Pareto front obtained for this scenario is represented in Fig. 6 with the cross
shape data points. Again the Pareto front shows that there is a point (point 3) where
diminishing returns applies; no matter how much one invests in the development the
increase in the overall SIL is almost insignificant (point 4). The differences between
the techniques recommended in data points 3 and 4 are as follows. Concerning devel-
opment, point 4 applies a ‘very good’ formal method at a ‘moderate’ intensity, a ‘very
good’ semi-formal method at a ‘very high’ intensity, a ‘good’ computer aided specifi-
cation tool at a ‘moderate’ intensity and structured method were not applied. The
process followed in data point 3 is identical to that followed in data point 1. Both
processes followed the same review activities. They both applied a ‘very good’ re-
view technique at a ‘low’ intensity. Similarly to the example within this case study
here overall integrity that can be claimed for a later phase is limited by the quality of
the development in an earlier phase.

5 Discussion

The BBN encodes an understanding of how development processes should affect
integrity claims. The BBN we used is not proposed as the ‘correct’ understanding of
this (controversial) proposed correlation. The purpose of a BBN in this application is
to make the assumptions transparent and act as a framework and tool for experts to
use to improve the accuracy and self-consistency of their model of this correlation.

Developing safety critical software is often a costly and error prone process. The
proposed DSS offers an interesting method to find a cost efficient set of techniques to
follow in order to meet a target SIL. This is important information to support manage-
rial decision-making regarding two key attributes, software product integrity and
development costs, and their relationship. In one organization the project manager
may be able to choose to increase the software safety integrity but will want to do so

 Safety Critical Software Process Improvement 107

in as cost efficient manner as possible. In another organization, the project manager
may choose to investigate whatever is possible in terms of integrity within a fixed
budget, and use that to decide whether to go ahead with a project. The latter is a po-
tential use of the tool in a contractual context, namely, to provide evidence to a pur-
chaser that the required software integrity can be achieved at the quoted cost.

With example one, we discussed processes present in the Pareto front obtained if
one is targeting SIL 3 and SIL 4 for phase 1 of the development lifecycle. The results
capture the simple idea that in order to have an effective and cost efficient process one
ought to employ an experienced team to carry out review activities. Perhaps contro-
versially, the BBN as built suggests that the experience of the personnel involved in
the development process (for requirements capture) does not necessarily need to be
high, provided that they have satisfactory training and good qualifications. This is
clearly a point on which one might question the knowledge encoded in the BBN.

In our second example, we considered the case where the project is at phase 2 of
the software development lifecycle, and the target integrity is SIL 3. The key observa-
tion is that in this case the BBN encodes the sensible phenomenon that the overall
integrity that can be claimed after phase 2 is constrained by development in phase 1.
This is specially highlighted when we presented our second Pareto front, illustrated
with the crosses data points in Fig. 6. Here we considered the case where the devel-
opment in phase 1 is poor. The only way to improve the integrity assessment for
phase 1 whilst in phase 2, is to use phase 2 review techniques that are able to find
phase 1 errors. However, it is reasonable to assume that due to the different nature of
the errors introduced at phase 1, some errors would only be found in other phases of
the development lifecycle that were not considered in case studies presented in this
paper.

The proposed DSS is based on genetic algorithms however it might be possible to
improve the performance of the DSS using a different type of meta-heuristic optimiza-
tion algorithm such as simulated annealing or tabu search. Simulated annealing is
known for facilitating proof of convergence. The only drawback is that this algorithm
is suitable for single objective optimization problem; further research would be needed
in order to adapt simulated annealing to our multi-objective optimization problem [21].
Tabu search on the other tackles an important issue in global optimization, namely, the
multiple evaluation of a solution. Such algorithm might provide a faster trajectory to
the Pareto front. A further potential enhancement to the current approach would be to
add another objective to our DSS, for example time (or effort). The DSS would then
search for those solutions that maximize the confidence in the product integrity whilst
it minimizes the costs and the time taken to develop the product.

A potential drawback is the huge subjectivity involved in building the BBN. Whilst
this subjectivity certainly exists, the nature of the reasoning performed lies behind
current international software safety standards, where it is in a gross form lacking
transparency. This notwithstanding, it is the basis of current best practice. The prob-
abilistic reasoning lying behind these standards should be made more explicit, and the
use of BBNs, whilst it probably can not remove much of subjectivity, does inject
much needed formalism into process based dependability regulation, and does ensure
coherency i.e. experts can not propose self-contradicting data.

Acknowledgments. We would like to thank our partners the UK Health and Safety
Executive and Stirling Dynamics Ltd for their support.

108 M. Brito and J. May

References

1. IEC61508. 1998-2000. Functional safety of electrical/ electronic/ programmable electronic
safety-related systems parts 1-7. Published by the International Electrotechnical
Commission (IEC), Geneva Switzerland

2. Brito, M., May, J.: Gaining Confidence in the Software Development Process Using Ex-
pert Systems. In J. Gorski (ed.), Computer Safety, Reliability and Security. Lecture Notes
in Computer Science Vol. 4166. Springer. Procs of the 25th International conf. on Com-
puter Safety, Reliability and Security (SAFECOMP 2006), Gdansk, Poland, 26-29
September (2006).113-126

3. Srinival,N.,Deb,K.: Multi-objective function optimization using non-dominated sorting
genetic algorithms.Evolutionary Computational Journal 2(3), (1994), 221-248

4. Goldberg, D. E.: Genetic Algorithms in Search, Optimization & Machine Learning,
Addison-Wesley. (1989)

5. Hugin A/S: http://www.hugin.com
6. Hugin Expert A/S. 1990-2005. Hugin API Reference Manual version 6.4
7. Hall, P. et al.: Integrity Prediction during Software Development. Safety of Computer

Control Systems. (SAFECOMP'92), Computer Systems in Safety-Critical Applications,
Procs of the IFAC Symposium, Zurich, Switzerland, October 28-30, (1992), pp. 239-244

8. Littlewood, B., Wright, D.R.: Proceedings of the 14th International Conference on Com-
puter Safety (SafeComp’95), Springler (1995). pp 173-190

9. Delic, K.A., Mazzanti, F., Strigini, L.: Formalising a software safety case via belief
networks, Proceedings DCCA-6, Sixth IFIP International Working Conference on De-
pendable Computing for critical Applications, Garmisch-Partenkirchen, Germany. (1997)

10. Fenton, N.E., et al: Assessing dependability of safety critical systems using diverse evi-
dence. IEE Proceedings Software Engineering 145 1 (1998), pp. 35–39

11. Morgan, M. G., Henrion, M.: Uncertainty: A Guide to Dealing with Uncertainty in
Quantitative Risk and Policy Analysis, Cambridge University Press, Cambridge, UK. (1990)

12. Savage, L. J.: Elicitation of Personal Probabilisties and Expectations. Journal of the
American Statistical Association, vol. 66, no 336 (1990), pp. 783-801

13. Cockram, T. Gaining confidence in software Inspection using a Bayesian Belief Model.
Software Quality Journal, vol. 9, no. 1, (2001), pp. 31-42

14. Pearl, J.: Probabilistic reasoning in intelligent systems, Morgan Kaufmann (1988)
15. Spiegelhalter, D.J., Dawid, A.P., Lauritzen, S.L., Cowell, R.G.: Bayesian Analysis in

Expert Systems. Journal of Statistical Science, vol .8, no. 3, (1993), pp. 219-283
16. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multi-objective optimization:

Formulation, discussion and generalization. In Proceedings of the Fifth International
Conference on Genetic Algorithms,(1993), pp. 416-423

17. Horn, J, Nafploitis, N., Goldberg, D.: A niched Pareto genetic algorthm for multi-objective
optimization. In Procs 1st IEEE Conf. on Evolutionary Computation, (1994), pp. 82-87

18. Zitzler, E., Thiele, L.: An Evolutionary algorithm for multi-objective optimization: The
strength Pareto approach. Technical report 43, Zurich, Switzerland: Computer Engineering
and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) (1998)

19. Smith, D., Simpson. K.: Functional Safety – A straightforward guide to applying
IEC61508 and related standards. Elsevier (second edition), ISBN: 0750662697 (2004)

20. Rivett, R.S.: Emerging Software Best Practice and how to be compliant. Proceedings of
the Sixth International EAEC Congress (1997)

21. Aarts E, Korst, J.: Simulated Annealing and Boltzmann Machines – A Stochastic Approach
to Combinatorial Optimization and Neural Computing. John Wiley & Sons, (1989)

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 109–120, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Representing Process Variation with a Process Family

Borislava I. Simidchieva, Lori A. Clarke, and Leon J. Osterweil

Laboratory for Advanced Software Engineering Research (LASER),
University of Massachusetts at Amherst, 140 Governors Drive, Amherst, MA 01003

{bis,clarke,ljo}@cs.umass.edu

Abstract. The formalization of process definitions has been an invaluable aid in
many domains. However, noticeable variations in processes start to emerge as
precise details are added to process definitions. While each such variation gives
rise to a different process, these processes might more usefully be considered as
variants of each other, rather than completely different processes. This paper
proposes that it is beneficial to regard such an appropriately close set of process
variants as a process family. The paper suggests a characterization of what
might comprise a process family and introduces a formal approach to defining
families based upon this characterization. To illustrate this approach, we
describe a case study that demonstrates the different variations we observed in
processes that define how dispute resolution is performed at the U.S. National
Mediation Board. We demonstrate how our approach supports the definition of
this set of process variants as a process family.

Keywords: process families, process variation, process variants, process
instance generation, software product lines.

1 Introduction

Process definitions are used as vehicles for improving coordination, communication,
automation, and efficiency in teams that are developing software [19, 31].
Increasingly, process definitions are also being used to improve the functioning of
teams in domains as diverse as manufacturing [10], medicine [7, 18], business
[14, 40], and science [2, 33]. In all of these domains one can readily find processes
that are widely used to discipline the way in which key aspects of the work are to be
carried out. In earlier work we have begun to define the specific processes of interest
in these domains; as we have elaborated these processes to lower levels of precise
detail, however, we have started to observe that different team members often
perform the process in ways that differ from each other. Although the differences may
seem to be primarily differences in detail, process details can matter a great deal.
Thus, it is necessary to consider how each of these differences produces a process
variant, which is indeed a different process.

The existence of a proliferation of different processes would seem to complicate
efforts to improve coordination, automation, and improvement in that it raises the
question of which process is to be used to gain these improvements. Our observation
is that some of the differences may indeed be profound, but that many differences
might best be thought of as variations on a high-level process that is generally agreed

110 B.I. Simidchieva, L.A. Clarke, and L.J. Osterweil

upon. If this is the case, then a large set of different variations might be thought of,
and defined as, a process family, and that the process family might itself then be used
as the basis for coordination, automation, improvement, training, etc.

In this paper we begin exploring the validity and applicability of the idea of
process families. We attempt to characterize the sorts of variation that might be
allowed within a family, and ways in which such variation might be represented. We
validate our ideas by means of a case study, exploring the variation that we have
observed in the course of defining the process of conducting a mediation at the U.S.
National Mediation Board, and evaluating a specific approach to representing some of
the principal forms of variation.

2 Related Work

Some particularly good summaries of work in software families, product lines, and
vatiation are [30, 41]. Svahnberg et al. [38], in addition, present a taxonomy of
different variability realization techniques. Jacobson et al. [20] describe some
commonly used techniques to support software reuse, where variability is a main
issue including inheritance, extension and extension points, parameterization,
templates and macros, configuration and module interconnection languages, and
generation of derived components. Other approaches include conditional compilation
and dynamic binding [13], aspect- and feature-oriented programming [24, 35].

Generation approaches (e.g. [4, 8, 25]) seem particularly relevant to our work. In
[8], the authors discuss the relation of feature models to various generative
programming techniques such as inheritance and parameterization. In [34], the
authors propose using component generators to support dynamically configurable
components in software product lines. Moreover, these approaches often use a
configuration specification as the basis for generation. This is similar to the notion of
diversity interfaces introduced in the Koala model [39], where mechanisms such as
switches, modules, and dynamic bindings of components capture variability and
diversity. Jarzabek’s XVCL (XML-based Variant Configuration Language) language
[21] also describes systems in terms of variations and uses a generator to bind the
variation points to specific variants. Work on decision models uses specifications to
guide generation. KobrA [3] seems to have strong similarities to our proposed
approach. KobrA extends UML models with decision models to describe the
variability of components. In KobrA, each variation point is related to decisions and
each component is associated with a decision model in addition to its structural,
behavioral and functional models. A decision model is a list of decisions, a set of
possible resolutions to each decision, and the possible effects of each resolution on
the UML diagrams. The concept of decision models is also used in FAST [41] to
support instantiation of domain models. Feature-oriented approaches have also been
proposed to model variability. The FORM method [27] develops reusable and
adaptable domain artifacts by using a feature model using AND/OR graphs where
AND nodes indicate mandatory features and OR nodes indicate alternative features. A
similar feature model is proposed by Griss et al [16]. Feature graphs, however, can
become quite complex and unmanageable even for domains of reasonable sizes.

Our work is related to previous work in collaboration and group support systems,
such as Group Systems ThinkTank or Facilitate.com, that support group decision

 Representing Process Variation with a Process Family 111

making. Such tools implicitly define a process family by offering configuration
options (e.g., are contributed ideas anonymous?) and by letting session "owners"
change configurations dynamically (e.g., enabling categorization). We believe that
our approach of providing vehicles for explicit representation of the process offers
clear advantages. Groupware systems fall into three broad categories: 1) Systems that
are "process-agnostic" such as Groove, WebEx, SameTime, or Caucus, 2) domain-
specific tools, like the group support systems mentioned above, and 3) groupware
toolkits (e.g, Lotus Notes) that support building groupware tools with a programmer-
specified embedded process. Neither the "process-agnostic" nor the domain-specific
tools support explicit representation of the process being executed, and while they
may passively support a range of processes, they cannot support understanding the
relationships between them. Similarly, while groupware construction tools support
explicit coding and thus conformance of a single member to a process family, they
cannot support clear representation of, and thus reasoning about, the family.

We strongly concur with Briggs, who argues that collaboration research should
focus on "technology supported collaboration processes" instead of "collaboration
technology" [6]. This idea is echoed in [26] that discusses the "emerging field of
Collaboration Engineering" which is "an approach that designs, models, and deploys
repeatable collaboration processes".

Much literature addresses modeling of software development processes, with an
increasing focus on modeling workflows [14, 28, 40], business processes, and service
architectures [1, 12]. There is far less focus on processes for government applications,
and on negotiation and dispute resolution. Many approaches are based upon the use of
a flowgraph model of the process [2, 29]. Others use such formalisms as finite state
machines [17, 23] or Petri Nets [11, 15]. In some cases, the formalism recognizes the
need to also model artifacts [37], often by using simple type systems. In fewer cases,
the need to model resources and agents is also recognized, and again these models are
usually simplistic [5, 9].

3 Approach

We propose applying the software product family approach to processes as a way to
handle process variation. By creating a number of processes, which are all variations
of one metaprocess, or alternatively, by creating one metaprocess to span an entire
group of related processes, a process family is effectively generated. For several
processes to be members of the same family, they must be sufficiently similar, i.e.,
contain a common core that is identical or slightly different across processes. Often, it
may be difficult to identify a core but these processes may still belong to the same
family if, at a higher level of abstraction, they are determined to be the same.

We hypothesize that all necessary process instances can be generated from a
framework, perhaps with the aid of some sort of specification of required process
goals. The fundamental approach to doing this is through composition of components
that deal with three distinct principal process dimensions. This approach (illustrated in
Figure 1) is beneficial because it would allow for reuse of components across the
process family and more importantly, the generation of new members of the family by
simply compiling elements from common repositories.

112 B.I. Simidchieva, L.A. Clarke, and L.J. Osterweil

We have experimented with the use of the Little-JIL process definition language
[42, 43] as a vehicle for representing process families. Little-JIL is unusual in its clear
separation of three concerns in process definition, namely the need for definition of 1)
individual process steps and their coordination, 2) the behaviors of the agents that
perform steps, and 3) the structure of the collection of artifacts that are produced and
consumed by the steps. A complete Little-JIL process definition consists of one of
each these three types of definition components. This is a particularly promising basis
for modeling and defining process families, because each selection of a different set
of these three components will generate a different process. In our work we have
initialized the set and structure of steps with a fixed process, which we call the
“Coordination Metaprocess,” we then made varying augmentations with elaborative
steps, while also making different selections of agent behaviors and artifact structures.
This allowed for substantial process variation, and the totality of all such variants is
what we call a process family.

Fig. 1. Procedure for generating process instances

As indicated in Figure 1, selected process elaboration instances could be drawn
from a library to add elaborative details to the Coordination Metaprocess. The
resulting coordination model instance is then composed with selected agent and
artifact specifications. Selection of specific components from the appropriate libraries
might be driven by the process goal specification. Understanding how this is done
requires a short explanation of principal features of Little-JIL.

A Little-JIL process definition is a hierarchical decomposition of steps, each of
which is executed by a specified agent. Steps communicate with each other by
exchanging artifacts. Thus, a Little-JIL process definition consists principally of three
parts: 1) a coordination model that is a structure of steps represented by a
“coordination diagram” such as shown in Figures 2 and 4, 2) a repository of agents,

 Representing Process Variation with a Process Family 113

Fig. 2. The Little-JIL coordination diagram representing the “Brainstorm” process

one of which is selected for late binding to execute a step (each step in the
coordination diagram has an agent), and 3) a library of artifacts used, created, and
transmitted by the steps of the process. Binding different agents and different artifact
definitions to a given coordination model is thus a way to achieve process variation.

Figure 2 is a visual representation of a Little-JIL coordination model of a
simplified brainstorming process. The coordination model is a hierarchy of process
steps, each of which is depicted by a black rectangular “step bar”. The step name is
located above the step bar, which is accompanied by a set of badges that denote
several semantic features. The behavior of a step is defined to be the behaviors of its
children (the steps below the parent, connected to it by edges emanating from the left
side of the step bar define the workflow, and the steps, connected to the parent by
edges emanating from the right side of the bar are exception handlers). Leaf steps
(i.e., those having no children) have no behaviors defined by the coordination model.
Their behaviors are the behaviors of the step’s assigned agent, enabling process
variation in a way that will be illustrated.

Non-leaf steps contain a sequencing badge (imbedded in the left of the step bar),
which defines the order in which its sub-steps execute. For example, a “Sequential”
step (right-arrow in the “brainstorm” step in Figure 2) indicates that its sub-steps are
executed in left-to-right order. In Figure 2, “solicit options” is a Sequential step,
indicating that “propose option” and “clarify options” must be executed in this order.

Note that the step “propose option” is connected to its parent by an edge annotated
with “+” (a Kleene Plus). This indicates that “solicit options” has one or more copies
of “propose idea” as its child(ren). The tag “agent: participant” specifies that any
agent executing this step must be of type “participant”. This obliges the agent

114 B.I. Simidchieva, L.A. Clarke, and L.J. Osterweil

repository to assign agents able to execute “participant” functions to each of these
child steps. Thus the activity “solicit options” is defined to be one or more
participants proposing options. Similarly, a * (Kleene Star) annotation means that the
child step can be executed any number (zero or more) of times.

The “clarify options” step has a circle with a slash through it on the left of its step
bar, which indicates that it is a “Choice” step. A Choice step is carried out by having
its agent (in this case a mediator) make a choice between the various defined
alternatives, each of which is defined to be a substep. Thus, in this case, the agent
chooses between “process question about idea” and “comment on idea” as the way in
which “clarify options” is to be executed. There are no other allowable alternatives.

Note that in this Coordination Model, the step “solicit options” consist of “propose
option” and “clarify options.” While the details of “propose option” are not specified
(as it is a leaf step), the Coordination Model does specify that this step is capable of
throwing an exception. This is inferable by the presence of an X on the right of the
step bar of its parent, indicating that the parent, “solicit options,” incorporates as part
of its definition a subprocess that defines how to handle the throwing of an exception
by any of its children. In this case, the X is connected to a child step, “handle
inappropriate submission”, presumably indicating that when the process of doing
“propose option” results in the detection of offensive material, then the “handle
inappropriate submission” step is invoked to delete that contribution. This exception
handler is defined to be “complete,” therefore the flow of execution continues as
though the “solicit options” step has thereby been concluded.

Of additional importance is the way in which artifact flow is defined in Little-JIL.
In the Coordination Model shown in Figure 2, the step “go over interests,” for
example, has a defined outgoing parameter, interest list, which is passed to its parent,
the “brainstorm” step. Specifications of all the additional artifact flows in Figure 2 are
elided here to reduce the complexity of the example.

Using Little-JIL, we can model process variation and generate instances of
different processes within a family through several techniques. We have thus far
identified three such process instance generating techniques:

Agent Behavior: By modifying the behavior of the agents executing the process (or
parts of it), we create a variant of the process. Different selections from among
different agent behaviors at execution time will create different process variants, but,
moreover, additional variation is possible through the use of different semantics for
defining the agent repository itself. For example, we propose to consider substituting
for the previously described model in which objects have static collections of
methods, a model in which the collection of methods used to define agent types is
dynamic, responding to changes in process execution. This would take some control
of the methods usable by an agent out of the agent’s hands, thus creating the
capability for additional process variation.

Task Elaboration: By “clipping on” small elaboration processes onto a leaf step, we
can specify how to execute it differently. Since leaf steps contain no details specifying
how they are to be executed, this decision is entirely up to the execution agent bound
to the step. By adding elaborative substeps, the agent is mandated to execute the step
as defined by the behaviors of these children.

 Representing Process Variation with a Process Family 115

Artifact Structure: By selecting artifacts from a library of different artifact
structures, featuring differences in semantics, structure, and content, we can create
different process instances.

4 Case Study

In an ongoing research collaboration with the National Mediation Board (NMB), we
have been developing a process definition for online dispute resolution (ODR) to be
used by mediation professionals [22, 32]. We suggested that a rigorous process
definition could be used to bring ODR technology into NMB, by indicating how
computer technologies could be incorporated into these processes.

We initially believed that there was one single process to be defined and that this
process had a well-defined goal, namely an agreement. But this project made it clear
that our earlier belief was naïve and one process could not encompass all the
variations introduced by the individual mediators. We found that not only do different
mediators employ different processes from one another but an individual mediator
might change the process, depending on the perceived effectiveness of the current
process execution and changing group dynamics. These processes however, all seem
to bear important familial relations to each other. Thus what the NMB context seems
to call for is a process family, rather than a single process. As part of the case study,
four descriptions of the “Brainstorm” process were elicited from four different
mediation professionals. All four have attended the same training and must follow the
same metaprocess prescribed by the NMB (partially outlined in Figure 2). We
attempted to use the approach described above to see if all four elicited processes
elicited could be best comfortably thought of as a process family.

5 Results

The “Brainstorm” coordination process shown in Figure 2 will now be taken as the
Coordination Metaprocess that is to be used as the basis for a process family. We
apply the three instance generation techniques outlined in section 3 to demonstrate
how variation can be introduced to span a large set of variants, including all of the
four different processes elicited from NMB personnel.

Agent Behavior Variation: Recall that it seems necessary to support variation due to
differences in the ways in which different agents perform an activity, perhaps under
different circumstances during an ODR process execution. Thus, for example,
different levels of anonymity might be desirable under different brainstorming
circumstances, and this can be specified by defining differences in the ways in which
different agents deal with the artifacts they must process. Figure 3 contains two
different formal definitions of how an agent may deal with such artifacts. In this
example, an agent is considered to be an instance of a type (in this case, the type is
“Mediator”), and the definition of the type is in terms of the methods that it can
execute. We assume that the various methods are the various ODR process activities
that the agent may be called upon to execute.

116 B.I. Simidchieva, L.A. Clarke, and L.J. Osterweil

In this example, two different subtypes of agents of type Mediator are defined.
Both definitions include a specification of how the step “Propose Options” is to be
executed by detailing exactly how to execute the method “options list.add”. The agent
instance Mediator-1 of subtype Fully-Anonymous Mediator is defined so that it will
never add to an options list any information about the contributor of a list item. On the
other hand, the Mediator-2 agent instance of the Partially-anonymous Mediator
subtype is defined to identify an options list item contributor only if the contributor is
of type Mediator. Statically specifying either subtype will assure that the
corresponding agent behavior is always executed, thus providing process variation.
The possibility of execution time subtype binding affords the possibility of more
variation in behavior. Clearly, one can populate an agent library with specifications of
how each of the needed agent types is to execute each of the steps to which it might
ever be bound in a full family of processes. In some cases, the agent specification
might be null, in which case the agent would have no restrictions on its behavior.

Fully-Anonymous Mediator is-subtype-of Mediator:
Propose Options:
 for (Option opt: options) {
 options list.add(new Option(opt.what)); }
 Instances: Mediator-1{anonymous:yes}
Partially-anonymous Mediator is-subtype-of Mediator:
Propose Options:
 participant is-a mediator {
 for (Option opt: options) {
 options list.add(new Option(opt.who,
opt.what)); }
Propose Options:
 for (Option opt: options) {
 options list.add(new Option(opt.what)); }
 Instances: Mediator-2{anonymous:partially}

Fig. 3. An example of items from the agent repository

Or, as in the case shown in Figure 3, different agent subtypes might have different
mandated behaviors, perhaps for the different steps to which they might be bound as
agents or perhaps in response to different execution state details. The organization and
structure of an agent repository is the subject of current research [36]. Thus, Figure 3
shows only one example of how this repository might be organized and defined. It is
not clear that a type inheritance hierarchy will necessarily be used. It is conceivable
that other agent definition approaches might be used at least to specify parts of agent
behaviors. Subsequent research is expected to shed light on which agent definition
formalisms, and which agent library organization strategies, seem most effective in
supporting needed agent-based variation.

Task Elaboration: To demonstrate the task elaboration technique, we elaborate the
“present issue” step that is a leaf in the Coordination Metaprocess in Figure 2. Until
the process fragment of Figure 4 is bound to the “present issue” step of the process in
Figure 2, the way this step is to be executed is determined solely by the agent bound
to it, subject to any restrictions or directions specified in the agent’s definition.

 Representing Process Variation with a Process Family 117

Fig. 4. “Present issue” process fragment elaboration

Once the process fragment of Figure 4 is bound, however, a new process instance
(i.,e. a new member of the process family) is created. The new process instance
differs from the previous process instance in that “present issue” now mandates that
an issue statement is created and discussed by all participants iteratively until all agree
to the statement (which means that the optional step “disagree with proposed
statement” will not be executed, and ”present issue” will not be called again), as
directed by the process in Figure 4. Other process fragments could be defined to
create other variations on this process. By late-binding different process fragments,
new process instances are created and incorporated into the family. While late binding
of step structures to leaf steps is not currently possible with the present version of the
Little-JIL interpreter, this feature is to be included in future versions.

Artifact Structure Variation: As previously mentioned, the step “go over interests”
in the Brainstorm process in Figure 2 has an outgoing parameter, interest list. The
interest list is an unordered collection of the interests of the parties who are
bargaining. Depending on which mediator professional is leading the mediation, he or
she may choose to keep all interests together without duplicates, or alternatively, they
can choose to keep each party’s interests separate, without duplicates within the party.

This variation can be easily achieved by changing the artifact structure of interest
list—by adding or removing an author party annotation to the structure of the interest
list and by removing duplicates based on a predetermined comparison (e.g. if an
author party annotation is present, two interests are the same only if both contents and
author party are the same).

6 Discussion

Through applying the three outlined techniques for creating process variants through
process instance generation (changes in the agent behavior, artifact structure, or task
elaboration fragments), we have been able to generate multiple instances that span
most of the variations in the four processes elicited for the case study. By applying
more than one technique simultaneously, much larger families can be generated.

118 B.I. Simidchieva, L.A. Clarke, and L.J. Osterweil

This approach also provides an important vehicle for reuse in process definition by
treating similar processes as a process family built from a common core (the
Coordination Metatprocess) and a set of additional components, which augment the
core. Moreover, by applying these techniques, it is easy to fine-tune large processes
by switching components depending on the execution circumstances.

Although this approach to process families seems to be very promising, a
considerable variety of additional work is also suggested. Initially, instance
generation is to be done manually, based upon selection from libraries of agent
repositories, artifact models, and process coordination elaboration models,
respectively. Eventually, we expect that automation will at least facilitate, if not
completely replace, manual selections from these libraries, although it is likely that
human customization will always be needed to produce the three components to be
composed into the final process instance.

Finally, it is important to gain a stronger sense what constitutes a process variant.
As noted above, selecting different choices during execution seems quite different
from creating different variants. Our case study did not provide us with much insight
into how to distinguish between these two notions. It might be useful to address this
problem by establishing formal metrics for determining the degree of similarity
between processes, and perhaps use such metrics to guide decisions about what
constitutes a viable variant.

Acknowledgements. The authors express their gratitude to Daniel Rainey of the
National Mediation Board for providing the details of the ODR metaprocess. The
authors also gratefully acknowledge Alexander Wise, Norm Sondheimer, Ethan
Katsh, Leah Wing, Allan Gaitenby, M.S. Raunak, and Matt Marzilli for their support
and insights about online dispute resolution, process formalisms, and Little-JIL.

This research was supported in part by the U.S. National Mediation Board and the
US National Science Foundation under Award Nos. CCR-0204321 and CCR-
0205575. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation thereon. The views
and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the U.S. National Mediation Board, the U.S. National
Science Foundation, or the U.S. Government.

References

1. Alonso, G., Agrawal, D., Abbadi, A.E., Kamath, M., Gunthor, R., Mohan, C.: Advanced
transaction model in workflow context. Proceedings of the 12th IEEE International
Conference on Data Engineering, Proc. 12th International Conference on Data
Engineering, New Orleans, February 1996 (1996) 574-581

2. Altintas, I., Berkeley, C., Jaeger, E., Jones, M., Ludäscher, B., Mock, S.: Kepler: An
Extensible System for Design and Execution of Scientific Workflows. Proceedings of the
16th International Conference on Scientific and Statistical Database Management,
Santorini Island, Greece (2004) 423-424

3. Atkinson, C., Bayer, J., Muthig, D.: Component-based product line development: The
KobrA approach. Proceedings of the The First International Software Product Line
Conference, Denver, CO (2000) 289-309

 Representing Process Variation with a Process Family 119

4. Batory, D., O'Malley, S.: The design and implementation of hierarchical software systems
with reusable components. ACM Transactions on Software Engineering and Methodology
1 (1992) 355-398

5. Belkhatir, N., Estublier, J., Walcelio, M.L.: ADELE-TEMPO: an environment to support
process modelling and enaction. Software Process Modeling and Technology (1994)
187-222

6. Briggs, R.O.: On theory-driven design and deployment of collaboration systems. Int. J.
Hum.-Comput. Stud. 64 (2006) 573--582

7. Clarke, L.A., Chen, Y., Avrunin, G.S., Chen, B., Cobleigh, R., Frederick, K., Henneman,
E.A., Osterweil, L.J.: Process Programming to Support Medical Safety: A Case Study on
Blood Transfusion. Proceedings of the Software Process Workshop 2005, Beijing, China.
Springer-Verlag (2005) 347-359

8. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley (2000)

9. Dami, S., Estublier, J., Amiour, M.: APEL: A Graphical Yet Executable Formalism for
Process Modeling. Automated Software Engineering International Journal 5 (1998) 61-69

10. Deming, W.E.: Out of the crisis. MIT Press, Cambridge, MA (1982)
11. Emmerich, W., Gruhn, V.: FUNSOFT Nets: a Petri-Net based Software Process Modeling

Language. IWSSD '91: Proceedings of the 6th International Workshop on Software
Specification and Design, Como, Italy (1991) 175-184

12. Foster, H., Uchitel, S., Magee, J., Kramer, J., Hu, M.: Using a Rigorous Approach for
Engineering Web Service Compositions: A Case Study. SCC '05: Proceedings of the 2005
IEEE International Conference on Services Computing (2005) 217-224

13. Gacek, C., Anastasopoules, M.: Implementing product line variabilities. Proceedings of
the 2001 Symposium on Software reusability, Toronto, Ontario, Canada (2001) 109-117

14. Georgakopoulos, D., Hornick, M.F., Sheth, A.P.: An Overview of Workflow
Management: From Process Modeling to Workflow Automation Infrastructure. Distributed
and Parallel Databases 3 (1995) 119-153

15. Ghezzi, C., Mandrioli, D., Morasca, S., Pezze, M.: A Unified High-Level Petri Net
Formalism for Time-Critical Systems. IEEE Transactions of Software Engineering 17
(1991) 160-172

16. Griss, M., Favaro, J., d'Alessandro, M.: Integrating Feature Modeling with the RSEB.
Proceedings of the 5th International Conference on Software Reuse (1998) 76-85

17. Harel, D., Naamad, A.: The {STATEMATE} semantics of statecharts. ACM Transactions
on Software Engineering and Methodology 5 (1996) 293--333

18. Henneman, E.A., Cobleigh, R., Frederick, K., Katz-Basset, E., Avrunin, G.S., Clarke,
L.A., Osterweil, J.L., Andrzejewski, C.J., Merrigan, K., Henneman, P.L.: Increasing
Patient Safety and Efficiency in Transfusion Therapy Using Formal Process Definitions.
University of Massachusetts, Amherst (2006)

19. Humphrey, W.S.: Managing the software process. Addison-Wesley, Boston, MA (1989)
20. Jacobson, I., Griss, M., Jonsson, P.: Software Reuse: Architecture, Process and

Organization for Business Success. Addison-Wesley Professional (1997)
21. Jarzabek, S., Zhang, H., Zhang, W.: XVCL: XML-Based Variant Configuration Language.

Proceedings of the International Conference on Software Engineering, ICSE'03, Los
Alamitos, CA. IEEE Computer Society Press (2003) 803-811

22. Katsh, E., Osterweil, L., Sondheimer, N.K.: Process Technology for Achieving
Government Online Dispute Resolution. Proceedings of the National Conference on
Digital Government Research, Seattle, WA (2004)

120 B.I. Simidchieva, L.A. Clarke, and L.J. Osterweil

23. Kellner, M.I.: Software Process Modeling Support for Management Planning and Control.
Proceedings of the First International Conference on the Software Process, Redondo
Beach, CA (1991) 8-28

24. Kiczales, G., Lamping, J., Mandhekar, A., Maeda, C., Lopes, C.V., Loingtier, J., Irwin, J.:
Aspect-Oriented Programming. Proceedings of the European Conference on Object-
Oriented Programming. Springer-Verlag (1997) 220-242

25. Knauber, S.J.a.P.: Synergy between Component-Based and Generative Approaches.
Proceedings of ESEC/FSE-7, Toulouse, France (1999) 2-19

26. Kolfschoten, G.L., Briggs, R.O., Vreede, G.-J.d., Jacobs, P.H.M., Appelman, J.H.: A
conceptual foundation of the thinkLet concept for Collaboration Engineering. International
Journal of Human-Computer Studies 64 611-621

27. Kyo, C., Kang, S.K., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A Feature-Oriented
Reuse Method with Domain Specific Reference Architectures. 143-168

28. Leymann, F., Roller, D.: Workflow-Based Applications. IBM Systems Journal 36 102-123
29. Mayer, R.J., al, e.: IDEF Family of Methods for Concurrent Engineering and Business Re-

engineering Applications. Knowledge Based Systems, Inc. (1992)
30. Northrop, L.: Software Product Lines--Practices and Patterns. Addison-Wesley (2002)
31. Osterweil, L.J.: Software Processes Are Software, Too, Revisited. Proceedings of the 19th

International Conference on Software Engineering, Boston, MA (1997) 540-558
32. Osterweil, L.J., Sondheimer, N.K., Clarke, L.A., Katsh, E., Rainey, D.: Using Process

Definitions to Facilitate the Specifications of Requirements. Department of Computer
Science, University of Massachusetts, Amherst, MA (2006)

33. Osterweil, L.J., Wise, A., Clarke, L.A., Ellison, A.M., Hadley, J.L., Boose, E., Foster,
D.R.: Process Technology to Facilitate the Conduct of Science. Proceedings of the 2005
Software Process Workshop, Beijing, China. Springer-Verlag (2005) 403-415

34. Pavel, J.N.S., Royer, J.-C.: Dynamic Configuration of Software Product Lines in
ArchJava. Proceedings of the Third International Software Product Line Conference
(2004) 90-109

35. Prehofer, C.: Feature-Oriented Programming: a Fresh Look at Objects. ECOOP '07.
Springer-Verlag (1997)

36. Raunak, M.S., Osterweil, L.J.: Effective Resource Allocation for Process Simulation: A
Position Paper. Proceedings of the International Workshop on Software Process
Simulation and Modeling, St. Louis, MO (2005)

37. Suzuki, M., Katayama, T.: Meta-Operations in the Process Model HFSP for the Dynamics
and Flexibility of Software Processes. Proceedings of the First International Conference on
the Software Process, Redondo Beach, CA. IEEE Computer Society Press (1991) 202-217

38. Svahnberg, M., Bosch, J.: A Taxonomy of Variability Realization Techniques. Software
Practices and Experience 35 705-754

39. van Ommering, R., Kramer, J., Magee, J.: The Koala Component Model for Consumer
Electronics Software. IEEE Computer 33 78-85

40. Weigert, O.: Business Process Modeling and Workflow Definition with UML (1998)
41. Weiss, D.M., Lai, C.T.R.: Software product-line engineering: a family-based software

development process. Addison-Wesley (1999)
42. Wise, A.: Little-JIL 1.5 Language Report. Department of Computer Science, University of

Massachusetts, Amherst, MA (2006)
43. Wise, A., Cass, A.G., Lerner, B.S., McCall, E.K., Osterweil, L.J., Sutton, S.M.: Using

Little-JIL to Coordinate Agents in Software Engineering. Proceedings of the Automated
Software Engineering Conference, Grenoble, France (2000)

An Algebraic Approach for Managing Inconsistencies in
Software Processes�,��

Qiusong Yang1,3, Mingshu Li1,2, Qing Wang1, Guowei Yang1,3, Jian Zhai1,3,
Juan Li1, Lishan Hou1, and Yun Yang4

1 Laboratory for Internet Software Technologies,
Institute of Software, Chinese Academy of Sciences, Beijing 100080, China
{qiusong yang,mingshu,wq,yangguowei,zhaijian,lijuan,

houlishan}@itechs.iscas.ac.cn
2 State Key Laboratory of Computer Science,

Institute of Software, Chinese Academy of Sciences, Beijing 100080, China
3 Graduate University of Chinese Academy of Sciences, Beijing 100039, China

4 Faculty of Information and Communication Technologies,
Swinburne University of Technology

Hawthorn, VIC 3122, Melbourne, Australia
yyang@ict.swin.edu.au

Abstract. To produce quality software and evolve them in an economic and
timely fashion, enactable software process models are used for regulating de-
velopment activities with the support of Process-Centered Software Engineering
Environments (PCSEEs). However, due to the dynamically changing develop-
ment environment, the developers do not always follow the process model in
presence of unforeseen situations. As human with creativity and variant nature,
each developer has his or her own way of doing development that may not be al-
lowed by the process model. As a result, various inconsistencies arise in software
processes and then the authority of the process model will be undermined. In this
paper, we propose an algebraic approach to promote the efficient management of
inconsistencies. With the approach, potential inconsistencies can be precisely de-
tected and valuable diagnostic information is available to help process designers
efficiently locate the detected inconsistencies. The effectiveness of the approach
is demonstrated by experimenting it on an example process.

Keywords: Software Engineering, Software Process, Inconsistency, Verification,
Algebraic, PCSEE, TRISO/ML.

1 Introduction

As for the software process literature, the researches mainly focuses on software
process modelling and software process improvement. The research on the software
� This work is supported by the National Natural Science Foundation of China under grant Nos.

60573082, 60473060; the National Hi-Tech Research and Development Plan of China under
Grant No. 2006AA01Z185; the National Key Technologies R&D Program under Grant No.
2005BA113A01.

�� One of the authors, Yun Yang, gratefully acknowledges the support of K. C. Wong Education
Foundation, Hong Kong.

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 121–133, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

122 Q. Yang et al.

process modelling involves devising notations for expressing process models, enacting
the models within PCSEEs, and providing concrete guidance on the actual develop-
ment process. To discuss the enactment mechanisms for PCSEEs, Dowson [1] clarifies
the three domains of software processes: process definition (or process model in this
paper) contains characterizations of processes or fragments of processes expressed in
some notation; process performance encompasses the actual activities or actions con-
ducted by human agents and non-human agents in the course of a software project;
process definition enactment (or process enactment for short) encompasses what takes
place in a PCSEE to support process performance governed by process definition.

In an ideal world, the process enactment can obtain timely and correct feedback from
the process performance to know what actual activities or actions are conducted. A
software process model describes an ideal process for development and provides proce-
dures to handle possible exceptions. However, the feedback from process performance
to process enactment is subject to the variant nature of human and tends to be delayed,
ignored, or even erroneous [1]. In addition, it is impossible to define an ideal software
process in advance and specify procedures to manage all unforeseen situations. As a re-
sult, the environment-level inconsistency [2] will occur when the process performance
is not properly reflected in the process enactment.

When a software process is modelled, a set of properties or invariants can be specified
to characterize the correctness of process models. When a property is violated in process
performance, an inconsistency will arise. This type of internal inconsistency in process
performance is called domain-level inconsistency in [2]. A domain-level inconsistency
does not necessarily result in an environment-level inconsistency. If the process model
successfully predicts the domain-level inconsistency in the process performance, the
process enactment will take corresponding actions and the process performance is still
faithfully reflected in the process enactment.

As shown in Figure 1, the ultimate goal of PCSEE is to make the process perfor-
mance governed by the process model. PCSEEs provide mechanisms to enact the pro-
cess model and components to interact with the environment so that the process model
is enforced in the process performance. However, the process performance may deviate
from the process model as a result of the existence of inconsistencies. The “performance
model” in Figure 1 denotes the underlying model that governs the process performance,

Process Model
Performance

Model

Process
Enactment

Process
Performance

Govern

Feedback

Guidance

Govern

Fig. 1. Process Inconsistencies

An Algebraic Approach for Managing Inconsistencies in Software Processes 123

which may be discovered from the logs and events of process performance. If a domain
level inconsistency occurs, the invariant that is violated in the process performance
should not be satisfied by the performance model. Correspondingly the performance
model will be “different” or inconsistent with the process model if an environment-
level inconsistency exists between the process performance and the process enactment.

In this paper, an algebraic approach based on the polyadic π-calculus is proposed to
detect existing inconsistencies and help process designers efficiently locate and resolve
the inconsistencies. To mask the mathematical intricacies of the polyadic π-calculus,
we present a graphical modelling language in Section 2. In Section 3, the graphical
language is mapped onto the polyadic π-calculus and the mapping rules are given.
Section 4 describes the methods for detecting domain-level and environmental inconsis-
tencies. To demonstrate the effectiveness of the approach and show how to help process
designers efficiently locate and resolve inconsistencies, a case study is presented in
Section 5. The work related to the research in this paper is presented in Section 6 and
the paper is concluded in the last section.

2 Visualizing Software Processes with TRISO/ML

A visualization support will help to fully make use of the rigid operational semantics
of the polyadic π-calculus without considering its underlying mathematical intricacies.
TRISO/ML (TRidimensional Integrated SOftware development model/Modelling Lan-
guage) is proposed for supporting the TRISO Model advocated in [3][4]. With rather
simple and concise graphical notations in Figure 2, the language provides powerful ab-
stractions of control flow, data dependency, and resource usage in software processes.

ActivityParallel Sequencial Choice

Fig. 2. Graphical Notations

Definition 1 (Software Process in TRISO/ML). In TRISO/ML, a software process is
defined as a tri-tuple: (V , E , μ) where:

– V is a set of nodes, as the union of C∪A. C represents the set of nodes controlling the
sequencing of activities. Each node in C is in type of either Parallel, Sequencial,
or Choice. A denotes the set of activities that are carried out in a software process.
An activity can be hierarchically decomposed into a set of sub-activities through the
nodes in C, which regulates the sequencing of the sub-activities.

– E ⊆ (C × A ∪ A × C) is a set of directed edges. If e ∈ E , and s(e) = a ∈ A,
then there does not exist any other edge e′, with e′ ∈ E , d(e′) �= d(e), and s(e′) =
a (where s, d : E → V , denoting the starting and ending node associated with
a directed edge, respectively). It states that an non-terminal activity can only be
decomposed once. The out-degree of a node in C is greater than two.

124 Q. Yang et al.

– μ : (A∪C×A) → Attr maps each element in A∪C×A to a set of attributes. For
an edge e ∈ C × A, its labelled attributes specify the data exchanges between an
activity and one of its sub-activities connected by e. The data exchanges include the
items that an sub-activity receives from its parent activity before its execution and
the items that an sub-activity sends to its parent activity after its completion. For
two activities that no one is the ancestor of the other, the data exchange between
them is implemented as communication along channels. As for each activity node
belonging to the set A, the input/output channels and data transmitted along those
channels can be declared as attributes. In addition, the actor to perform an activity
is also an attribute of the activity.

ModuleA

Detailed
Design Coding

Development Test Cases

ch1: tcf

DEDE

DE

ch1: tcf

Fig. 3. An Example Process Model

An Example Process. The example presented in this section aims at demonstrating the
modelling of software processes in TRISO/ML. It will be used as an example through-
out this paper. In the example, the development of a module is assigned to a developer.
He or she is responsible for specifying detailed design, coding and testing of the mod-
ule. As the test-driven methodology is applied, the developer is required to devise test
cases before the writing of code. In Figure 3, the example process is modelled with the
graphical notations. The temporal order and data dependency between the activity Test
Cases and the activity Coding is implemented through the synchronized communication
on the channel ch1.

In Figure 4, one developer may abide by the test-driven approach, in which the tem-
poral order and data dependency between Coding and Test Cases are satisfied. The
performance model is consistent with the process model in Figure 3. On the contrary,
another developer may be customized to the traditional development method, other than
the test-driven methodology. He or she begins to write code before test cases are avail-
able. The test cases are written and used for testing after the source code is completed.
The corresponding performance model is shown in Figure 5. In the model, the activity
Coding does not wait for a message indicating the availability of test cases.

An Algebraic Approach for Managing Inconsistencies in Software Processes 125

ch1: tcf

ModuleA

Detailed
Design

CodingTest Cases

DEDE DE

ch1: tcf

Fig. 4. Performance Model I

ModuleA

Detailed
Design

Coding Test Cases

DEDE DE

ch1: tcf

Fig. 5. Performance Model II

3 Mapping TRISO/ML onto Polyadic π-Calculus

In this section, the syntax and the reduction semantics of the polyadic π-calculus is
firstly introduced. Then, the rules for mapping each construct of TRISO/ML onto the
polyadic π-calculus are provided.

3.1 Polyadic π-Calculus

The π-calculus comes in two basic styles: the monadic calculus [5], where exactly one
name is communicated at each synchronization, and the polyadic calculus [6], where
zero or more names are communicated. We choose the polyadic calculus, because it is
more elegant to use for modelling purposes and allows a notion of sorts [6][7].

Definition 2 (Polyadic π-calculus). The syntax of the polyadic π-calculus is given in
the following BNF equations [7]:

P := M | P |P ′ | (νz)P | !P
M := 0 | π.P | M + M ′

π := x〈ỹ〉 | x(z̃) | τ | [x = y]π

Briefly, 0 is inaction representing a process which can do nothing; the prefix π.P can
perform the output, input, silent τ or match action, thereby evolving into P ; the sum
M + M ′ offers the choice of M or M ′; the composition P |P ′ – “P par Q” – places
the two processes together and they will be concurrently active and act independently,
but can also communicate; the (νx)P – “new x in P”– restricts the use of the name x
to P and it declares a new unique name x, distinct from all external names, for use in
P . As for the output and input prefixes, the intended interpretations of them are that
x〈ỹ〉.P can send the tuple ỹ via the co-name of x and continue as P , and that x(z̃).Q
can receive a tuple ỹ via the name x and continue as Q{ỹ/z̃}. The unobserved prefix
τ.P can evolve invisibly to P . τ is the internal action of a process and not visible to the
external viewer. The match prefix [x = y]π.P can evolve as π.P if x and y have the
same name, otherwise the process acts as 0.

126 Q. Yang et al.

The reduction system of the given polyadic π-calculus is defined as:

Definition 3 (Reduction). The reduction relation −→ over processes is the least rela-
tion satisfying the following rules [7]:

R − INTER
x〈ỹ〉.P1 | x(z̃).P2 −→ P1|P2{ỹ/z̃}

R − TAU
τ.P + M −→ P

R − PAR
P1 −→ P ′

1

P1|P2 −→ P ′
1|P2

R − RES
P −→ P ′

(νz)P −→ (νz)P ′ R − STRUCT
P1 ≡ P2 −→ P ′

2 ≡ P ′
1

P1 −→ P ′
1

where |ỹ| = |z̃| for the R − INTER rule.

In the definition, ≡ represents the structural congruence among processes. The opera-
tional semantics of the polyadic π-calculus becomes simple under the R − STRUCT
rule.

3.2 Mapping Rules

In this section, the rules for mapping a software process modelled in TRISO/ML onto
the polyadic π-calculus processes are provided. All constructs of TRISO/ML defined
in Section 2 are covered by them. With these rules, the interpreting procedure becomes
rather straightforward and mechanical.

Rule 1. For an actor with the unique identifier ac, the polyadic π-calculus process for
it has the following form:

Aac
def
= assignac(start, end).start.end.Aac|Aac

The process Aac waits on channel assignac for channels start and end. When the actor
wants to begin to perform the activity, the process will send an empty message through
the received start channel. The actor will receive an empty message from the end
channel when all the sub-activities of the assigned activity have been finished. Having
accomplishing an activity, the actor will be ready for another task.

Rule 2. For an activity a ∈ A, it receives {b11, · · · , b1m}, · · · , {bl1, · · · , bln} from the
channels {chi1, · · · , chil} and {p1, · · · , pu} from the channel exap a, sends
{c11, · · · , c1s}, · · · , {cr1, · · · , crt} through the channels {cho1, · · · , chor}, and re-
turns {q1, · · · , qv} to its parent ap through the channel exa ap . Then, the polyadic
π-calculus process Aa for the activity is:

Aa
def
= (ν i1, · · · , il, io)(Ias 〈i1, · · · , il〉 |Ea〈i1, · · · , il, io〉 | Oa〈io〉)

Ia
def
= (i1, · · · , il).chi1(b11, · · · , b1m).̄i1〈b11, · · · , b1m〉| · · · |

chil(bl1, · · · , bln).̄il〈bl1, · · · , bln〉.exap a(p1, · · · , pv)

Oa
def
= (io).io(c11, · · · , c1s, · · · , cr1, · · · , crt, q1, · · · , qv).

cho1〈cr1, · · · , crs〉. · · · .chor〈cr1, · · · , crt〉.exa ap〈q1, · · · , qv〉

An Algebraic Approach for Managing Inconsistencies in Software Processes 127

The process Aa is the concurrent combination of Ia, Ea, and Oa. The process Ia re-
ceives data from prescribed channels and the channel connecting to its parent activity,
then sends the received data to the process Ea through private channels. Acting as a
relay station, Ia ensures that the communication on any input channel can be carried
out immediately and deadlocks will not arise as the result of the mismatch between the
order of input and the order of manipulation. When an activity and its sub-activities
are completed, it will output data to other activities and its parent activity, as shown
by the process Oa. The execution of the activity is modelled by the process Ea, whose
definition is given by the following rules.

Rule 3. For a non-terminal activity a ∈ A, it is refined to w sequential activities,
a1, · · · , aw. Each sub-activity may specify the information exchanges with its parent.
For example, the wth sub-activity will receive {pw1, · · · , pwj} from the activity a and
returns {qw1, · · · , qwk}. The activity will be assigned to the actor with the unique iden-
tifier ac. Then the Ea process for the activity a is:

Ea = (i1, · · · , il, io).i1(b11, · · · , b1m). · · · .il(bl1, · · · , bln).exap a(p1, · · · , pu).

triggera.assignac〈starta, enda〉.starta.exa a1〈p11, · · · , p1h〉.triggera1.

exa1 a(q11, · · · , q1i).triggereda1. · · · .exa aw〈pw1, · · · , pwj〉.triggeraw.

exaw a(qw1, · · · , qwk).triggeredaw.triggereda.enda.

io〈c11, · · · , c1s, · · · , cr1, · · · , crt, q1, · · · , qv〉

In this rule, each output variable must be bounded by certain input prefix. As an ex-
ample, for ∀t, 1 ≤ t ≤ w: {pt1, · · · , pt.} is a subset of {b11, · · · , b1m} ∪ · · · ∪
{bl1, · · · , bln} ∪ {p1, · · · , pu} ∪ {q11, · · · , q1i} ∪ · · · ∪ {q(t−1)1, · · · , q(t−1).}. All the
following rules are also subject to this constraint. Firstly, the process Ea withdraws the
relayed input from the process Ia. Then, the activity a is assigned to the prescribed actor
when the activity is triggered by its parent activity. The actual execution of the activity
will not begin until the actor decides to do so. As the activity a is a non-terminal node,
the process Ea then sequentially triggers the execution of its sub-activities. When the
activity is completed, it will notify its parent and release the assigned actor. At last, the
obtained data will be sent to the process Oa for output.

Rule 4. For a non-terminal activity a ∈ A, it is decomposed into w concurrently com-
bined activities. Then the Ea process for the activity a is:

Ea = (i, q, i1, · · · , il, io).(νka1, · · · , kaw)i1(b11, · · · , b1m). · · · .il(bl1, · · · , bln).
exap a(p1, · · · , pu).triggera.assignac〈starta, enda〉.starta.(E1|E2)

E1 = (exa a1〈p11, · · · , p1h〉.triggera1.exa1 a(q11, · · · , q1i).triggereda1.

ka1.ka1〈q11, · · · , q1i〉) | · · · |(exa aw〈pw1, · · · , pwj〉.triggeraw.

exaw a(qw1, · · · , qwk).triggeredaw.kaw.kaw〈qw1, · · · , qwk〉)
E2 = ka1.ka1(q11, · · · , q1i). · · · .ka1.kwa(qw1, · · · , qwk).

triggereda.enda.io〈c11, · · · , c1s, · · · , cr1, · · · , crt, q1, · · · , qv〉

128 Q. Yang et al.

The process E1 triggers the sub-activities concurrently and the E2 process collects re-
sults from sub-activities and output them to the process Oa. The enforced synchroniza-
tion on channels ka1, · · · , kaw ensures that the process E2 is executed after the process
E1 even under the condition that there is no activity passing data back to the activity a.

Rule 5. For a non-terminal activity a ∈ A, it is decomposed into w sub-activities,
which are combined together through the choice operator. Then the Ea process for the
activity a is:

Ea = (i, q, i1, · · · , il, io).(νk)i1(b11, · · · , b1m). · · · .il(bl1, · · · , bln).
exap a(p1, · · · , pu).triggera.assignac〈starta, enda〉.starta.(E1|E2)

E1 = (exa a1〈p1, · · · , ph〉.triggera1.exa1 a(q1, · · · , qj).triggereda1.k.k〈q1, · · · , qj〉) + · · ·

+(exa aw〈p1, · · · , ph〉.triggeraw.exaw a(q1, · · · , qj).triggeredaw.k.k〈q1, · · · , qj〉)
E2 = k.k〈q1, · · · , qj〉.triggereda.enda.io〈c11, · · · , c1s, · · · , cr1, · · · , crt, q1, · · · , qv〉

Rule 6. For a terminal activity a ∈ A, it is not decomposed further. Then the process
Ea for the activity a is:

Ea = (i, q, i1, · · · , il, io).i1(x11, · · · , x1m). · · · .il(xl1, · · · , xln).exap a(p1, · · · , pu).

triggera.assignac〈starta, enda〉.starta.exa ap〈p1, · · · , ph〉.triggereda.enda.

io〈c11, · · · , c1s, · · · , cr1, · · · , crt, q1, · · · , qv〉
Rule 7. The software process is defined as the concurrent combination of activities and
actors:

SP = Aa1 | · · · |Aam | Aac1 | · · · | Aacn

To analyze or simulate the software process, sometimes an additional process modelling
the environment is needed to make the system closed. The process is named Env and
it is concurrently combined with the process SP . It can be simply defined as:

Env = triggerroot.triggeredroot

where root denotes the root activity of a software process.

4 Detecting Inconsistencies with Polyadic π-Calculus

In this section, the detections of domain-level and environment-level inconsistencies
are implemented based on the two types of analyses, respectively.

4.1 Domain-Level Inconsistencies

The domain-level inconsistency is the violation of process model invariants by the per-
formance model. At the same time, the process performance model can be mechanically
transformed into polyadic π-calculus expressions. Thus, the detection of domain-level
inconsistencies can be efficiently implemented through the model checking of polyadic

An Algebraic Approach for Managing Inconsistencies in Software Processes 129

π-calculus. With the modal μ-calculus, not only the local properties but also the endur-
ing and long term properties can be specified [8]. Specifically, the following properties
can be used for detecting some enduring inconsistencies:

Control Flow. The control flow describes the sequencing of activities. The activities in
a software process tends to be highly concurrent. The set of possible traces of a process
may be too large to be efficiently managed when the scale of the project is in large. The
following type of domain-level inconsistencies may be mechanically detected:

– μZ.〈−〉tt ∧ [−act]Z), the action act is eventually carried out
– μX.[acta](μY.[actb](νZ.[actb]ff∧[−]Z)∧〈−〉tt∧[−actb]Y)∧〈−〉tt∧[−acta]X ,

the sequence · · · , acta, · · · , actb, · · · is eventually executed in a process
– μX.[acta]([actb]tt∧ [−actb]ff)∧〈−〉tt∧ [−acta]X , the sequence · · · , acta, actb,
· · · is eventually executed in a process

– νZ.[acta](μY.〈−〉tt ∧ [−actb r]Y) ∧ [−]Z , whenever the action acta happens, the
action actb eventually happens

– νZ.[act]ff ∧ [−]Z , the action act will never happen in a process

Data Dependency. The data dependencies among the activities in a software process
are modelled as communication along channels in the polyadic π-calculus. As the con-
tent of artifacts is difficult to be modelled directly, the communication is mainly used
for passing the state of activities and providing additional information for actors to
make decisions. The synchronized communication also reflects the data dependency
between activities. With the modal μ-calculus, the following type of inconsistencies in
data dependencies may be detected:

– νZ.[ch](μY.〈−〉tt ∧ [−ch]Y) ∧ [−]Z , whenever there is an input on the channel
ch, the output on the channel ch eventually happens

– νZ.〈−〉tt ∧ 〈−〉Z , the satisfaction of this property shows that there is no deadlock
in the process, that is to say there is no deadlocks resulting from erroneous data
dependencies.

Race Condition. As for the modelling of software process in the polyadic π-calculus,
the actors in software processes are shared resources. In theory, the recursive definition
with concurrent self-combination in Rule 1 enable an actor to do infinite tasks simul-
taneously. It is equivalent that there are infinite copies of the same actor. Although it
has a elegant form, the process has infinite states and its capability has to be limited to
meet the requirements of finite-sate verifications. One of the solutions is to replace the
process in Rule 1 with finite copies. For example, if an actor can accept at most two
tasks at the same period, the process for an actor is defined as:

Aac
def
= assignac(start, end).start.end.Aac|assignac(start, end).start.end.Aac

As actors are commonly shared resources, the allocation of tasks should be balanced.
The property featuring whether a race condition arise can be defined as:

μX.[assignac][assignac]tt ∧ 〈−〉tt ∧ [−assignac]X

It states that the fact that the actor ac may be assigned two tasks at the same time
eventually becomes true. If it is regulated that no one can be assigned more than one
task at the same time, the satisfaction of the property will result in an inconsistency.

130 Q. Yang et al.

4.2 Environment-Level Inconsistencies

As for the detection of environment-level inconsistencies, it is surveyed from the rela-
tionship between the process model and the performance model. If the process model
and the performance model show the same behaviors, no environment-level inconsis-
tency occurs. Although the process model and the performance model do not have the
same behaviors, there is still no environment-level inconsistency if the behaviors of the
performance model can be accomplished by the process model.

In the process algebra literature, there are extensive studies on the equivalence and
partial order relationships on processes based on their behaivors[6] [7]. The weak ob-
servational equivalence (or weakly bisimulation equivalence) and may preorder , which
will be used later, are defined as:

Definition 4 (Observational Equivalence)
Let (S,A,→) be a labelled transition system, where S is a set of states (or processes),
A is a set of actions, and →⊆ S × A × S is the transition relation. τ is a transition
label which is not externally visible. The weak transition is defined as:

– q ⇒ε q′ denotes q = q0 →τ q1 → τ · · · →τ qn = q′, n ≥ 0
– q ⇒α q′ denotes q ⇒ε q1 →α q2 ⇒ε q2, α �= τ

Then, the relation S is a weak bisimulation relation if whenever q1Sq2 then:

– q1 →α q′1 implies q2 ⇒α q′2 for some q′2 such that q′1 S q′2
– q2 →α q′2 implies q1 ⇒α q′1 for some q′1 such that q′1 S q′2

q1 and q2 are observationally equivalent, or weakly bisimulation equivalent, if q1 S q2

for some weak bisimulation relation S [9].

Definition 5 (May preorder). Let t ∈ (A − {τ})∗ be a sequence of visible actions,
⇒t is a weak transition, and L(p) = {s ∈ (A− τ)∗|∃p′.p ⇒t p′} is the language of p.
Then the process p is the may preorder of the process q, if L(p) ⊆ L(q) [10].

Correspondingly, the process performance and the process enactment are environmen-
tal inconsistent if the process model and the performance model are not observational
equivalent and the performance model is not the may preorder of the process model.
The may preorder is used for detecting environment-level inconsistencies when only
partial of the process model is executed.

5 Case Study

In this paper, CWB-NC [11] and SPIN [12] are employed for analyzing the obtained
polyadic π-calculus expressions. To use these existing mature tools, it is necessary to
interpret the verification of software processes as a problem accepted by the correspond-
ing tool. The diagnostic information provided by the tools is shown to be valuable for
process designers to reconcile the process enactment and the process performance.

Domain-level Inconsistency. In the example, the activity Coding depends on the gen-
erated test cases produced in the activity Test Cases . The activity Coding can not begin

An Algebraic Approach for Managing Inconsistencies in Software Processes 131

to execute until it receives the notification from the activity Test Cases . The property
characterizing the data dependency is expressed by the following modal μ-calculus:

μX.[ch1](μY.[ch1](νZ.[ch1]ff ∧ [−]Z) ∧ 〈−〉tt ∧ [−ch1]Y) ∧ 〈−〉tt ∧ [−ch1]X

It states that the activity Coding will wait for the notification of the availability of test
cases, and the activity Test Cases will eventually produce the required artifacts.

In SPIN, the property can be described as: 〈〉p&&〈〉q (equivalent to 〈〉p&&〈〉p →
〈〉q), where p is defined as “E CO[e co id]@receive” and q is defined as
“E TE[e te id]@send” through the definition macro of Promela. The predicate p state
that the statement labelled with receive of the process E CO, representing the Ea pro-
cess of the Coding activity, can be executed immediately. The statement labelled with
receive will wait for receiving the notification of the availability of test cases from the
channel ch1. The predicate p is interpreted analogically.

When being verified in SPIN, the property will hold in the processes shown in
Figure 3 and Figure 4. It denotes that the process model is correct w.r.t the specified
data dependency and no domain level inconsistency arises during the performance of
Figure 4. However the property is violated in the the second performance shown in
Figure 5. SPIN tells that the performance ends in an invalid state and the trace leading
to the invalid state can be repeated through guided simulation. The trace is valuable to
process designers when he or she want to locate and resolve the inconsistency. He or
she can learn how the inconsistent internal state is reached and thus smart decisions can
be made on how to modify the process model or adjust the behaviors of developers.

Environment-level Inconsistency. When being input into CWB-NC, the process model
defined in Figure 4 is the may preorder the performance model in Figure 5. The action
associated with the activity Development is declared as internal behaviors. However,
the performance in Figure 5 is not the may predorder of the process model. CWB-NC
gives the Hennessy-Milner formula that discriminates one from another. The formula
that given by CWB-NC is:

[[trigger CO]]ff

where the action trigger CO symbolizing the start of the activity Coding. The for-
mula states that the activity Coding is unreachable in the performance model shown in
Figure 5, but not in Figure 3. In actual, their is a deadlock in the performance model.
The diagnostic information can help process designers efficiently locate and resolve the
environment-level inconsistency.

6 Related Work

The modelling of software processes has been one of basic subjects in the software
process literature. While software process modelling and software process enactment
have been discussed extensively, software process analysis has not been discussed to
the same extent. Amongst the very few software process modelling approaches that deal
with software process model analysis, [13] analyzes the static and dynamic properties

132 Q. Yang et al.

of software processes modelled in FUNSOFT. Those properties are closely related the
analysis techniques developed for Petri net. [14][15] analyze processes written in Little-
JIL with the data flow analysis tool, FLAVERS [16]. [17] verifies the process in Little-
JIL and the interpreter of Little-JIL with LTSA. These researches mainly focuses on
the model checking of processes, that is the domain level inconsistencies discussed
in this paper. In addition, most of existing languages are designed for enhancing the
understanding of processes and supporting the enactment of process models, other than
for formal analysis or verification.

In [2], the author gives a formal framework for clarifying the concept of the two
types of inconsistencies and describing the relationship between them. But the author
says little about how to detect inconsistencies and what support should be provided to
locate and resolve them. In [18], the author describes a PCSEE tolerating the existence
of inconsistencies. However, the correctness of process models can not be checked me-
chanically due to the PLAN language used in the PCSEE. It is possible that an invariant
is violated even if no deviation has been performed if an incorrect process model is en-
acted. In addition, no more help is provided to process designers when the reconciliation
is carried out, other than the articulated operations are listed. [19] provides an approach
to manage inconsistency using viewpoints, which is analogous with viewpoints for re-
quirement engineering. The analysis of processes expressed with viewpoints has to be
manually conducted. The effectiveness of the approach highly depends on the experi-
ence of the analyst and is limited to processes with small scale.

7 Conclusion

As a conclusion, it is inevitable that inconsistencies will arise in software processes.
The consequence of the inconsistencies is that the process performance will deviate
from the process model and that the performance may be completely out of the control
of PCSEEs. An algebraic approach is proposed in this paper to effectively detect both
domain-level and environmental level inconsistencies. Valuable information is provided
to help process designers efficiently locate and resolve detected inconsistencies. The
effectiveness of the approach is demonstrated through an example problem.

In this paper, it is assumed that a process model has been discovered from the process
performance. It is possible that the discrepancy between the discovered performance
model and the process performance results in inconsistencies, although the process per-
formance is consistent with the process model. Under this circumstance, the diagnostic
information obtained during the process for detecting inconsistencies can still help pro-
cess designers locate the source of discrepancy.

References

1. Dowson, M., Fernström, C.: Towards requirements for enactment mechanisms. In Warboys,
B., ed.: EWSPT. Volume 772 of LNCS., Springer (1994) 90–106

2. Cugola, G., Nitto, E.D., Fuggetta, A., Ghezzi, C.: A framework for formalizing inconsis-
tencies and deviations in human-centered systems. ACM Trans. Softw. Eng. Methodol. 5(3)
(1996) 191–230

An Algebraic Approach for Managing Inconsistencies in Software Processes 133

3. Li, M.: Expanding the horizons of software development processes: A 3-D integrated
methodology. In Li, M., Boehm, B.W., Osterweil, L.J., eds.: ISPW. Volume 3840 of LNCS.,
Springer (2005) 54–67

4. Li, M.: Assessing 3-D integrated software development processes: A new benchmark. [20]
15–38

5. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes – part I and II. Journal of
Information and Computation 100 (1992) 1–77

6. Milner, R.: The polyadic π-calculus: a tutorial. In: Logic and Algegra of Specificatio,
Springer-Verlag (1993)

7. Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. Cambridge Uni-
versity Press (2001)

8. Stirling, C.: Bisimulation, modal logic and model checking games. Logic Journal of the
IGPL 7(1) (1999) 103–124

9. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
10. Cleaveland, R., Hennessy, M.: Testing equivalence as a bisimulation equivalence. In: Pro-

ceedings of the International Workshop on Automatic Verification Methods for Finite State
Systems, London, UK, Springer-Verlag (1990) 11–23

11. Cleaveland, R., Li, T., Sims, S.: The concurrency workbench of the new century: user’s
manual. SUNY at Stony Brook. (2000)

12. Holzmann, G.J.: The model checker spin. IEEE Trans. Softw. Eng. 23(5) (1997) 279–295
13. Bröckers, A., Gruhn, V.: Computer-aided verification of software process model properties.

In: CAiSE ’93: Proceedings of Advanced Information Systems Engineering, London, UK,
Springer-Verlag (1993) 521–546

14. Cobleigh, J.M., Clarke, L.A., Osterweil, L.J.: Verifying properties of process definitions. In:
International Symposium on Software Testing and Analysis. (2000) 96–101

15. Raunak, M.S., Chen, B., Elssamadisy, A., Clarke, L.A., Osterweil, L.J.: Definition and anal-
ysis of election processes. [20] 178–185

16. Cobleigh, J.M., Clarke, L.A., Osterweil, L.J.: FLAVERS: A finite state verification technique
for software systems. IBM Systems Journal 41(1) (2002) 140–165

17. Lerner, B.S.: Verifying process models built using parameterized state machines. In: ISSTA
’04: Proceedings of the 2004 ACM SIGSOFT international symposium on Software testing
and analysis, New York, NY, USA, ACM Press (2004) 274–284

18. Cugola, G.: Tolerating deviations in process support systems via flexible enactment of pro-
cess models. IEEE Trans. Softw. Eng. 24(11) (1998) 982–1001

19. Sommerville, I., Sawyer, P., Viller, S.: Managing process inconsistency using viewpoints.
IEEE Trans. Softw. Eng. 25(6) (1999) 784–799

20. Wang, Q., Pfahl, D., Raffo, D.M., Wernick, P., eds.: Software Process Change, International
Software Process Workshop and International Workshop on Software Process Simulation and
Modeling, SPW/ProSim 2006, Shanghai, China, May 20-21, 2006, Proceedings. In Wang,
Q., Pfahl, D., Raffo, D.M., Wernick, P., eds.: SPW/ProSim. Volume 3996 of Lecture Notes
in Computer Science., Springer (2006)

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 134–146, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Cost Estimation and Analysis for Government
Contract Pricing in China

Mei He1,3, Ye Yang2, Qing Wang1, and Mingshu Li1,4

1 Laboratory for Internet Software Technologies, Institute of Software, Chinese Academy of
Sciences, Beijing 100080, China

{hemei,wq,mingshu}@itechs.iscas.ac.cn
2 Center for Systems and Software Engineering, University of Southern California, 941 W.

37th Place, SAL 330, Los Angeles, CA 90089 USA
yangy@Sunset.usc.edu

3 Graduate University of Chinese Academy of Sciences, Beijing 100039 China
4 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of

Sciences, Beijing 100080, China

Abstract. Software cost estimation methods and their applications in
government contract pricing have been developed and practiced for years.
However, in China, the government contract process has been questioned in
some aspects. It is largely based on analogy to past experience and/or expert
judgment, with a lack of informed decision making supported by mature
estimation methods. Moreover, two primary stages of the contract review process
for technical and finance contents are disjointed, which greatly limits the
accuracy and efficiency of government investment decision. To improve cost
estimation and assessment practices in Chinese government contract pricing, we
propose the COnstructive GOvernment cost MOdel (COGOMO), which
provides guidance and insights for formal cost estimation. This model
emphasizes the importance of accumulating knowledge from both government
and industry data repositories, and leverages to establish an industry
benchmarking reference model for local government contract pricing. It
integrates multiple classical research results in addition to COCOMO II, and
establishes the first formal model on software cost estimation and analysis for
Chinese government context. A list of suggestions is also discussed for
government’s further improvement on estimating practices.

Keywords: Cost estimation, Government contract pricing, Cost analysis.

1 Introduction

Software estimation is an integral part of a mature software process, and reliable
estimates help the perfection of software practices in terms of predictability and
manageability [1-4], while poor estimation is listed as one of the two most common
causes of runaway projects[5].. Though mature tools and processes for cost estimation
have been in market for over 20 years, difficulty is still being reported for the
government to effectively price the costs within software development programs [6].

 Cost Estimation and Analysis for Government Contract Pricing in China 135

In government contract pricing, analysts are expected to produce better predictions
in order to control project investment, where cost estimation techniques have been
widely adopted and are playing an increasingly important role. For example, the
southernSCOPE method [7] is adopted in Australia, and Contract Pricing Reference
Guide [8] is deployed in Defense Procurement and Acquisition Policy in the USA.

In China, software industry has been experiencing great-leap-forward development
in the past 20 years, especially after the promulgation of No. 18 Document by the State
Council in year 2000. During this period, the size of software industry was increased
from 23.8 billion RMB (~$2.9 billion) in 2000 to 390 billion RMB (~$48.8 billion) in
2005. Meanwhile, the central government has invested 4 billion RMB (~$0.5 billion) in
software, and spent over 30 billion RMB (~$3.8 billion) on purchasing e-government
products [9]. State government has adopted many preferential policies to encourage the
development of domestic software organizations, and the amount of funds keeps on
expanding. However, the performance in government contract projects is not very
satisfactory. Some primary reasons include: (1) Government contract pricing is largely
determined by subjective judgment, without support from past experience or formal
estimation tools; (2) Government records of historical contract projects are rarely
collected and maintained in a consistent and centralized way, and available data is
insufficient in quantity and mostly incomplete in quality in order to be directly reused;
and (3) There is a lack of contract pricing benchmark for government contractors as
reference when preparing for proposals. This may lead to unexplained costing items or
irresolvable cost discrepancies between proposals and the actual cost.

In this paper, we present an approach named COnstructive GOvernment cost MOdel
(COGOMO) to address the above issues. COGOMO provides guidance and insights to
formal cost estimation, emphasizes importance of accumulating government
knowledge base, and leverage to establish an industry benchmarking reference for local
government contract pricing.

The rest of the paper is organized as follows. Section 2 summarizes the related work.
Section 3 analyzes existing problems in our government contract pricing. In Section 4,
5, and 6, the COGOMO approach is described, and its implementation and application
in one typical government department are presented and discussed. Finally, section 7
concludes our achievement and points out future works.

2 Related Work

Among the large number of cost estimation models proposed over the last 20 years,
COCOMO [4] is a well known and widely used one, especially, its effort estimation
formula (shown bellow) is considered to be a general and typical format. As shown in
formula (1), COCOMO II [10] takes the project size and cost driver values as input,
known as an essential idea for most effort estimation model, which is also applied in
our modeling method.

While SEER [11] and PRICE [12] are the other two leading commercial software
cost estimation models, they are often used in together with COCOMO II by
government organizations such as NASA to drive and compare cost estimates [13].

∏××= i
E EMSizeAPM while ∑×+= iSF.BE 010 (1)

136 M. He et al.

At the same time, governments abroad have taken some strategies in contract
pricing. For example, Victorian State Government in Australia developed a new
approach called southernSCOPE. It allows businesses to purchase software
development on a dollar per function point basis, which can be compared to a cost per
square meter basis used in the construction industry. As another example, for large US
government contracts, “costing analysts” break the whole cost into direct cost and
indirect cost, and multiply direct costs by various rates to obtain the total cost [1].

These ideas are proved helpful in their government. Nevertheless, the definition and
understanding of cost are not the same as ours, and our experience and data resource are
quite different. For example, insurance and proposed profits are all excluded in our
government’s contracts.

In addition to these comparisons, we have also investigated and referred to
researches on such as role sets of software process in RUP (Rational Unified Process)
[14], effort distribution differences among different application types of software in
SPR (Software Productivity Research) [15], and industry benchmarking analysis in
ISBSG (International Software Benchmarking Standard Group) [16].

3 Problem Description

Since China first adopted market-oriented economic reform over 20 years ago, the
forms of government sponsorship have shifted from top-down assignment to bottom-up
application or tender contracts. Especially in recent years, the government emphasizes
the way of government procurement to choose contract undertakers, typically in
science and technology sponsored projects and e-government projects. Both
application forms submitted by applicants and tender documents filled by contract
undertakers basically consist in two parts: one is called technique or content part and
the other is called price or finance part. In this paper, we will use the terms “Content
Tender Document (CTD)” and “Finance Tender Document (FTD)” to refer to those
two parts respectively. CTD describes what product or services can be provided by
bidder, mainly involving implementation design, function description, technical
details, expected effort, while FTD details how much it costs and how this money will
be spent which usually includes the cost such as equipment procurement, required
development effort and related cost, and service effort and related cost.

Currently, the government contract pricing generally includes the following steps:
identifying subject matter, calling for bids in the forms of CTDs and FTDs; reviewing
CTDs and FTDs by different government expert groups independently, drawing
comprehensive scores with respect to each bid based on feedback from independent
reviews, and making final contract decisions as depicted in Fig. 1.

Several problems will inevitably take place in this review process. For example, if
one costing item of “performing inspections abroad three times” is listed in FTD,
reviewers of FTD will just make sure whether the cost is reasonable every time and it is
exactly three times planned rather than twice. However, in reality, it may be very likely
that there is no need to perform inspection abroad according to the requirements listed
in CTD. Hence, the current way of judging bids is often being questioned.

After the investigation, we find a key issue is that two parts of review are lack of
collaboration, and information is rarely communicated and exchanged between the two

 Cost Estimation and Analysis for Government Contract Pricing in China 137

Government

Identification of Subject Matter

Call for Bid

FTD

Bidders

Independent Review
of FTD

Independent Review
of CTD

Comprehensive Score

Final Contract Pricing

CTD

Bidders

Fig. 1. Typical steps during government contract pricing in China

groups. Frequently, this leads to seriously biased cost estimation and analysis results.
As a typical example, the proposed effort estimation and labor rate in some FTDs are
seldom compared with the proposed work product in CTDs.

To address these problems and improve the government contract decision process,
the COGOMO model is proposed to provide guidance and insights to formal cost
estimation and analysis in government software contract pricing in China.

4 Overview of COGOMO

COGOMO is developed based on the COCOMO II model with respect to Chinese
government project characteristics. It emphasizes the importance of accumulating
knowledge from both government and industry data repositories, and then leveraging
on such knowledge to establish an industry benchmarking reference for local
government contract pricing.

As illustrated in Fig. 2, the three elements in COGOMO include: an established
Government Knowledge Base (GKB), which will provide information to support the
following two parts of work; an effort estimation model, and a cost analysis module,
which are concerned in reviews of CTDs and FTDs respectively. The figure also shows
that these two parts are integrated through estimated effort which aims to bridge the
current gap between reviews of CTDs and FTDs.

Fig. 2. Overview of COGOMO

Total
Cost

Effort Estimation Cost Analysis

Government Knowledge Base

Data collection

Estimated
Effort

138 M. He et al.

Fig. 3. COGOMO based cost estimation process

Based on COGOMO, a specific cost estimation process, as depicted in Fig. 3, can be
set to elaborate the three steps. Step 1, establishing the GKB; step 2, modeling effort
estimation relationship and step 3, analyzing total cost.

Step 1: establishing GKB.
The establishment of GKB is based on our empirical study planned, performed, and
analyzed on international and domestic data from both industry and government
software projects. In our study, particular emphasis is laid on data analysis from the
following four sources to derive an effective GKB:

1) Government historical projects, which can help to analyze the requirements of
government contract, composition of expenditures and project types all through the
ages;

2) Industry historical projects, which can reflect software development conditions
across organizations in China;

3) Human resources in China, which can illustrate labor classification like role sets in
software process RUP [14] and provide local industry level information like incomes
for software personnel;

4) Industry benchmark, which can make a reference for model calibration and
government assessment based on local industry benchmark.

Step 2: modeling effort estimation.
In this step, effort estimation is modeled based on COCOMO II, whereas some
revisions need to be made to meet the requirements for government contract pricing in
China. According to the knowledge obtained from government and industry historical
projects in GKB, default COCOMO II model drivers are tailored and model parameters
are locally calibrated.

In practical applications of effort estimation, users input project size, rating of cost
drivers, then the model will calculate estimated effort as output.

Step 3: analyzing total cost.
Since staff cost often dominate the overall software project cost [2], the total cost can be
divided into the labor cost and other non-labor cost.

 Cost Estimation and Analysis for Government Contract Pricing in China 139

At first, on the foundation of effort distribution analysis and wage-rate information
gained from industry historical projects and human resource survey in GKB, the labor
cost at industry income level can be gained; then, taking other non-labor cost into
account, the total cost can be received finally.

Taking this 3-step approach as guideline, we applied it in the process of cost
estimation modeling for government sponsored project contract pricing in Beijing
Municipal Science & Technology Commission (BMSTC for short). The following
context will describe the implementation of our approach step by step in detail.

5 Modeling the COGOMO

5.1 Establishing Government Knowledge Base

Government historical projects. Data of 152 historical projects was collected from
BMSTC, which contain the information of project name, description, and expenditure
items. Analysis on this dataset led us to the following two findings:

• First, all the 152 government sponsored projects are classified as 5 general attributes:
development type, development language, platform, application type, and
architecture. For the future, this classification scheme will be refined while new
projects are added to GKB so that further analysis can be performed such as
comparing differences and similarities among different types of projects.

• Secondly, based on statistical analysis using expenditure record of government
historical projects, it is concluded that all reasonable expenditures composing total
cost are primarily from 8 categories: labor cost, investigation cost, tenancy cost,
traveling and communication cost, printing Cost, collaboration cost, energy and
material cost, and others (such as cost for software purchases, project inspection).

Industry historical projects. To collect industry historical projects, we designed
projects questionnaire, and distributed to 12 domestic software organizations.

In the questionnaire, we design 28 questions with 6 categories of issues including
general information, personnel, development environment, effort, sizing, and actual

Fig. 4. Questionnaire sample questions

140 M. He et al.

cost composition, referring to information gathered in COCOMO [10] and ISBSG [16]
data collection forms,. For the convenience of repliers, only 16 of them are answering
questions and the others are multiple choice questions; for the understandability of
questions, we specify the description for each choice. For example, as to product
reliability, descriptions (shown in Fig. 4) in 5 options are corresponding to the 5 levels
(very low, low, nominal, high, very high) for RELY in COCOMO.

Up till now, 16 responses from 7 software organizations were received, and the size
distributions are shown in Fig. 5.

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Projects

Si
ze

(K
L

O
C

)

Fig. 5. Size distribution of 16 projects

Human Resources in China. To collect labor rate data in software development, we
interviewed six experts all with more than 10 year experience in software
administration or government projects assessment. Combined with further references
such as survey reports of domestic consultation company, the labor rate pattern in
Chinese software industry is summarized in Table 1.

Table 1. Labor rate pattern in Chinese software industry. (Unit: USD/Month).

Type Wage rate
Requirement analysis / acquirement 1000-1500
Architecture analysis 875-1250
Implement (Programming) 375-500
Database design 1000
Test personnel 375-1000

Technical

Technology support 500
Project manager 1000-1875
Quality assurance 375-1000
Configuration management 375-625

Supervisory

Product manager / Problem principal 1875-3125
System management 375-625
Document editor 375-500
Other (e.g. researcher) 750

Industry Benchmark. Currently, there is no formal existing industry benchmark
database for software industry in China, and ISBSG (International Software
Benchmark Standard Group) sample datasets including 501 projects data are
introduced. In the sample datasets, there are 11 categories of information attributes for
each project; they are rating, sizing, effort, productivity, schedule, quality, grouping
attributes, architecture, documents & techniques, project attributes, and size other than

 Cost Estimation and Analysis for Government Contract Pricing in China 141

FSM (Functional Size Measurement). For the purpose of our study, we are interested in
a subset of such attributes as shown in Table 2.

Based on our approach as guideline, we can carry on effort estimation and cost
analysis for sponsored projects in BMSTC using current achievement gained in GKB.

Table 2. Attributes included in our study from ISBSG datasets

Count Approach Architecture

Functional Size
Architecture

Web development Sizing

Adjusted Function Points Effort Normalized Work Effort
Development Type Development Platform Grouping

Attributes Application Type Language Type
Documents &
Techniques

Development Techniques

Project
Attributes Primary Programming

Language

5.2 Modeling Effort Estimation

In Effort Estimation, based on classical effort formula in COCOMO II (refer to formula
1 in Section 2), our work are mainly focusing on the selection of model input and
calibration of model constant parameters with respect to GKB.

Tailoring for COGOMO. [17] proposes a reduced parameter modeling approach
which improves model accuracy by dropping insignificant cost drivers and leveraging
on reasoning between organization characteristics and its historical project costs and
schedules.

In our study, a subset of COCOMO II cost drivers is selected in accordance with
government requirements in contract pricing and analysis results of GKB. The
principles for our selection are:

Principle 1: To be significant. Some factors having common value for most projects
are not included. This principle helps in excluding TEAM, DOCU, SITE, and SCED
drivers.

Principle 2: To be organization-equal. The factors selected can only distinguish
different projects while shielding the difference between organizations. This helps us to
further drop RESL, PMAT, ACAP, PCAP, APEX, PLEX, PCON, and LTEX drivers.

Principle 3: To be accessible. They can be accessed and measured at early phases of
projects in most software organizations. PREC and TOOL are eliminated from
COGOMO according to this principle.

Principle 4: To be appreciable. The government can evaluate the veracity of
information offered by the applicant organizations. This principle confirms the deletion
of RESL, TEAM, and TOOL by previous principles.

Finally, 8 of COCOMO II cost drivers are left to be included in COGOMO effort
estimation model, including FLEX, RELY, DATA, CPLX, RUSE, TIME, STOR, and
PVOL. (For more information about the definition and rating levels for cost drivers,
see [10]).

142 M. He et al.

Calibrating COGOMO. To increase the effort prediction accuracy of COGOMO,
ISBSG sample datasets (the only industry benchmark data in GKB by now) are used to
calibrate its model parameters.

Local calibration is performed by running linear regression on project actuals (i.e.
actual size and effort) and fitting the data into such an equation as shown below. Newly

calibrated model constant A’ and B’, can be derived from equations of 0' βA e= and

1'B β= .

0 1Ln(PM) β β Ln(Size)= + × (2)

In our case, 501 data points have been used for the local calibration at one time, and
the points disseminate seriously (see Fig. 6). This is largely because different project
types always make big differences, so the parameters are further calibrated according to
project classification discussed in “government historical projects” in Section 5.1.

-4
-2
0
2
4
6
8

-2 0 2 4 6 8

Ln (Size)

L
n

(P
M

)

Fig. 6. Regression without classification

Linear regression is run on each type of projects in ISBSG, and calibrated A’ and B’
are obtained respectively. Fig. 7 and Table 3 demonstrates part of our calibration result.
In them, enhancement and new development describe different development types.
Since there is no cost driver ratings information in the dataset, the current r-square
values and accuracies are not very high, these are expected to be improved as we collect
more government projects for the future calibration.

Enhancement projects

-2.0

0.0

2.0

4.0

6.0

8.0

-2.0 0.0 2.0 4.0 6.0

Ln (Size)

L
n

(P
M

)

New Dev. Projects

0.0

2.0

4.0

6.0

0.0 2.0 4.0 6.0

Ln (Size)

L
n

(P
M

)

Fig. 7. Examples of linear regression with projects classification

Table 3. Examples of calibrated parameter and prediction accuracies with project classification

PRED(.30)
A’ B’ r-squares Before

classification
After

classification
Enhancement 1.61 1.01 0.70 33% 37%
New Development 1.81 0.96 0.71 36% 42%

 Cost Estimation and Analysis for Government Contract Pricing in China 143

Since our calibration result is based on much more industry benchmark data than
before, it should be more convincing to represent industry benchmark level.

5.3 Analyzing Total Cost

In COGOMO, the total cost is established based on labor cost calculated from effort
estimate and labor rate pattern, and other dominant non-labor cost.

Analysis of Labor Cost. Based on the labor rate pattern in GKB, total effort estimate
obtained from COGOMO effort estimation model is broken down into various work
types to get each cost respectively, and the summation of them is total labor cost.

Since the current data we have do not include any information on effort distribution,
our labor cost analysis module mainly relies on existing literature. Among several
researches on effort distribution, SPR (Software Productivity Research) [15] reports
effort distribution on the basis of different application types, which is also an
information item in GKB; the government can use SPR’s data easier.

Meanwhile, it is found from the data of SPR that MIS (Management Information
System) has special distribution values while others differ slightly. Hence, only MIS
and Non-MIS projects are partitioned for simplification. In the future, as the
information of applicant or tender documents is improved and increased continuously,
we can analyze effort distribution using our own data, and adjust current values.

Finally, referring to activity types identified above and labor types demonstrated in
Section 5.1, we set a mapping relationship between work and labor types, as shown in
Table 4. The summation of labor cost on each type of work is total labor cost.

Table 4. Work types and labor types mapping with relative wage-rate (Unit: USD/Month)

% of total effort Work Type MIS Other Labor Type Wage-rate

Requirement 3.7% 4.1% Requirement analysis/acquirement 1000-1500
Design 7.7% 22.0% Architecture analysis 875-1250
Coding 18.6% 23.3% Implement (Programming) 375-500
CM 1.3% 1.8% Configuration management 375-625
Documenting 4.4% 6.0% Document editor 375-500
Test 53.3% 30.5% Test personnel 375-1000
PM 11.0% 12.3% Project manager 1000-1875

Establishment of Total Cost. Total cost estimation is established according to the
portion of labor cost. At present, a total of 88 data points are used to derive the
relationship between labor cost and total cost estimation, excluding the projects which
are of types such as hardware development, technical investigation and research
reports, outsourcing and society service.

In our study, SPSS Ver. 11.0 was used for statistical analysis [18]. Fig. 8 shows the
result of Kolmogorov-Smirnov normality test for labor cost versus total cost, which is
significantly normal distribution. In the meantime, the regression on total cost and
non-labor cost data also show a very strong correlation, as illustrated in Fig. 9. Hence,
using labor cost value and explicit proportional relationship, we can establish estimated
total cost eventually.

144 M. He et al.

 Labor cost %
Mean 39.328182% Normal

Parameters(a,b) Std. Deviation 14.9760055%
Kolmogorov-Smirnov Z .603
Asymp. Sig. (2-tailed) .860
a Test distribution is Normal.
b Calculated from data.

Fig. 8. Nrmality test for labor cost vs. total cost

y = 0.6258x - 9.8631

R2 = 0.95

(500)

0

500

1000

1500

2000

0 500 1000 1500 2000 2500

Totao Cost (Unit: 10K RMB)

N
on

-L
ab

or
 C

os
t

Fig. 9. Non-labor cost vs. total cost

6 Case Study of COGOMO

In 2006, the COGOMO approach was introduced to BMSTC and experimented in cost
estimation of government sponsored software projects in BMSTC as initial practical
application. We got some constructive feedbacks from BMSTC:

1. The tool developed based on our model passed the acceptance test by government
experts group, and has been appointed to assist BMSTC in the new round of
government sponsored projects contract pricing.

2. Based on our analysis results, government experts found some bias existing in
previous experience. For example, one of their previous intuitive rules is that different
development language would impact cost significantly, but in fact the difference is
quite marginal.

3. The actual problems met in research led the government realize that some ignored
information like project size is a key factor in cost estimation and control, so the
required information in applicant form will be revised immediately.

4. Due to the essential necessity of government knowledge base in future
improvement, e.g. calibration of estimation model, adjustment of industry benchmark,
enhancement of resource management, and so on, our government has launched on
establishment of CSBSG (Chinese Software Benchmarking Standard Group).

With respect to the feedbacks from BMSTC, we are continuously growing the GKB
and refining the COGOMO approach by incorporating further guidelines and
intelligence in support of government contract pricing process improvement.
Moreover, we also provided some recommendations for our government policy in
standardizing contract pricing. For example, reviewers of tender documents can adopt
some parameterized cost estimation models such as COGOMO, and certain required
information in CTDs and FTDs sections should be traceable and consistent.

7 Conclusion and Future Works

There is an increasing concensus on estimation as an integral part of software
development life cycle, not only in providing rationale for early investigation of project
feasibility, but also in facilitating informed decision-making for effective monitoring
and control of project progress.

Taking cost estimation in government contract investigation process as initial
practical application, this paper proposes the COGOMO approach to address the

 Cost Estimation and Analysis for Government Contract Pricing in China 145

increasing difficulty experienced by Chinese government organizations in effectively
pricing the cost during its contract pricing process.

The COGOMO approach establishes a Government Knowledge Base using
accessible datasets; provides a tailored and calibrated effort estimation model based on
COCOMO II using appropriate industry and government data, and supports total cost
analysis to obtain labor cost and other non-labor cost based on effort estimation. The
initial application of COGOMO approach shows the improvement on cost estimation
practices.

Consequently, our research group will also take part in this series of further work,
and we plan to continuously enhance our approach on the basis of more datasets
accumulated.

Further works to improve our model include calibrating key parameters and
statistically analyzing effort distribution across activities with larger local industry data
sample, taking the risk factor into account, and further investigating assessment of
other non-labor cost.

Acknowledgements

This work is supported by the National Natural Science Foundation of China under
grant Nos. 60573082, 60473060; the National Hi-Tech R&D Plan of China under Grant
No. 2006AA01Z182; the National Key Technologies R&D Program under Grant No.
2005BA113A01. Also, we appreciate all the help offered by the members in the joint
research group between ISCAS-iTechs Lab and USC-CSSE (especially to Fengdi Shu,
Rong Yuan, Da Yang, Shujian Wu, Zinan Tang and Yuxiang Wan).

References

1. Stutzke, R.D.: Estimating Software-Intensive Systems: Projects, Products and Processes.
Addison Wesley Professional (2005)

2. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous & Practical Approach. 2nd.
Edition, PSP Publishing Company, Boston (1997)

3. Boehm, B.W., Papaccio, P.N.: Understanding and Controlling Software Costs. IEEE
Transactions on Software Engineering, Vol. 14, No. 10. (1988) 1462-1477

4. Boehm, B.W.: Software Engineering Economics. Prentice Hall, (1981)
5. Glass R.L.: Facts and Fallacies of Software Engineering, Addison Wesley Professional

(2002)
6. Vogelhut, C.J.: Contract Software for Government Acquisition Systems and Potential

Ethical Concerns. (1998) http://www.nps.navy.mil/wings/acq_topics/sw_acq_ethics.htm
7. southernSCOPE - Avoiding Software Budget Blowouts. (2005) http://www.egov.vic.

gov.au/ndex.php?env=-innews/detail.tpl:m1816-1-1-7:l0-0-1-:n832-0-0.htm
8. Contract Pricing Reference Guide. http://www.acq.osd.mil/dpap/contractpricing/
9. 2005-2006 Annual Report on China's Software Industry

10. Boehm, B.W., et al.: Software Cost Estimation with COCOMO II. Prentice Hall, NY(2000)
11. SEER-SEM, http://www.galorath.com
12. PRICE. http://www.pricesystems.com/.
13. NASA Handbook. http://ceh.nasa.gov/downloadfiles/pdfs/gregoryltrcostmgmt.pdf

146 M. He et al.

14. Understanding RUP roles. (2005)
 http://www-128.ibm.com/developerworks/rational/library/apr05/crain/index.html
15. Jones, C.: Software Assessments, Benchmarks, and Best Practices. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA (2000)
16. ISBSG. http://www.isbsg.org
17. Chen, Z.H., Menzies, T., Port, D., and Boehm, B.W.: Feature Subset Selection Can Improve

Software Cost Estimation Accuracy. PROMISE, St. Louis, Missouri (2005)
18. SPSS Inc.: SPSS 11.0 for Windows Student Version. Prentice Hall (2001)

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 147–158, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Multilateral Negotiation Method for Software
Process Modeling*

Nao Li1,3, Qing Wang1, Mingshu Li1,2, Shuanzhu Du1, and Junchao Xiao1,3

1 Laboratory for Internet Software Technologies, Institute of Software,
The Chinese Academy of Sciences, Beijing 100080, China

2 Key Laboratory for Computer Science, The Chinese Academy of Sciences,
Beijing 100080, China

3 Graduate University of Chinese Academy of Sciences, Beijing 100039, China
{linao,wangqing,dusz,xiaojunchao}@itechs.iscas.ac.cn,

mingshu@admin.iscas.ac.cn

Abstract. Currently most software process modeling approaches are predefined,
not automatically adaptive to different software projects, and provide little support
for development team formation with task and resources allocation in real
environments. Based on our ten-year working experience for software
organizations, we propose an agent-based multilateral negotiation model MNM-
PA to support dynamic software process modelling and ease the work of team
formation. MNM-PA brings the following advantages: (1) the software processes
are not predefined; (2) the software processes are for given projects and with
development teams, allocated tasks and task constrains. MNM-PA is an extension
of the classic one-time biding contract net protocol. It defines the main
components to model a complete negotiation process for software process
construction, especially including the negotiation strategies. MNM-PA is
implemented and experimented in a software process management tool namely
SoftPM, which is used in more than 100 software organizations in China.

Keywords: Negotiation, Software process modeling, Agent.

1 Introduction

Software process modeling (SPM) has been evolved for approximately 20 years.
Facing easily changing software processes, SPM is usually required with some extent
of flexibility in order to adapt different software projects. However, most the SPMs
applied in real software organizations are predefined, which results in much work of
manual adaptation. They also lack the supporting for development team formation
with task and resource (time, ability etc.) allocated in real environments, which can
ease the work of developers, especially the project managers.

* This work is supported by the National Natural Science Foundation of China under grant Nos.

60573082, 60473060, 60673121; the National Hi-Tech Research and Development Plan of
China under Grant No. 2006AA01Z185, 2006AA01Z19B; the National Key Technologies
R&D Program under Grant No. 2005BA113A01.

148 N. Li et al.

Basing on our ten-year experience of helping software organizations to construct
software processes, we propose an agent-based software process modeling method.
The whole idea is to apply agent-based automated negotiation technologies to
dynamically form a development team with allocated task and resource for a given
software project in real environments. Such a constructed team can be treated as
either a real software process to be executed or a decision making support result that
can be further adjusted by real developers. Our previous work [1][2][3] on this
method focus on agent construction. The agent in our method represents the entities
involved in software processes, which we usually call (software) process agent. They
are developers, teams, or organizations. The method for the agent construction is first
to collect the entity data from the experience database in our software process
management tool namely SoftPM [4][5], which is used in more than 100 software
organizations, and then construct the agent corresponding to that entity according to
the collected data. The agent contains the capability of that entity, the sources and the
knowledge it has, etc.

The focus of this paper is the negotiation between process agents. The main aim of
the negotiation is to allocate the tasks of a software project to the applicable process
agents with applicable resource, such as profit, work time, etc. In [7], a general
negotiation model NM-PA to support such negotiation is given and the focus is how
to achieve a flexible system design. Since it is general, concrete negotiation forms are
not defined, such as unilateral or bilateral, etc. Based on NM-PA, this paper proposes
a special multilateral negotiation model, namely MNM-PA. MNM-PA emphasizes the
multilateral characteristics of the negotiation, defines a multilateral negotiation
protocol and the corresponding multilateral negotiation strategies.

2 Related Work

The classic contract net protocol (CNP) [8] is a main research framework for non-
centralized task allocation. An obvious shortcoming of CNP is that the encounter only
happens once (one-time bidding). In software process modeling and many the other
applications agents need to interact more than once. To this end, some research
extends CNP to adapt different applications. However, CNP-based negotiation with
multi encounters result in multilateral (one-many) negotiation, which is been realized
important for real applications but little research addresses (most negotiation research
study the bilateral e.g. [9]). [10] works on multilateral negotiation and its focus is
negotiation strategies. However, its work is not complete. First, the definition of
negotiation thread is bilateral and does not show any multilateral characteristics.
Second, the given negotiation strategies also only addresses bilateral negotiation, i.e.
only handling one message between two agents in each encounter, rather than the
multi messages in each encounter, which is the cases in multilateral negotiation.

Our multilateral negotiation protocol is an extension of CNP and the multilateral
negotiation strategies are designed to correspond to the protocol. Our negotiation
model is a complete multilateral negotiation model.

 A Multilateral Negotiation Method for Software Process Modeling 149

3 Multilateral Negotiation Model MNM-PA

The negotiation process of the process agents is a one-to-many multilateral
negotiation between a negotiation initiator and many responders (we call the
negotiation participants except the initiator the responders). Therefore, it consists of
many bilateral negotiations, each of which is happened between the initiator and one
responder. The initiator is the process agent who allocates the tasks of a given
software project. It negotiates with each of the responders with regard to some
negotiation objectives, i.e., the attributes of the tasks, such as price, effort, quality,
etc., until it chooses one and allocates the tasks to it (for simplicity, we only discuss
one task negotiation in this paper but the main idea is same when applied to many
tasks). MNM-PA models such negotiation processes. Fig. 1 visualizes MNM-PA by
describing the main components in MNM-PA and the relations between them.

A: Process Agents
CC: The Cooperation
Contract
P: The Multilateral
Negotiation Protocol
S: The Negotiation
Strategies
Thr: The Negotiation
Threads

S

Decide Making

PControlling Controlling

Decide Making

S
Primitive

Message
CC

AA
Thr

Fig. 1. MNM-PA

Fig. 1 illustrates a bilateral negotiation between two process agents. An MNM-PA
based negotiation process consists of many such bilateral negotiations between the
negotiation initiator and responders. When it starts, it mainly includes two
components: the messages the negotiating agents send and the controlling the agents
comply with. In MNM-PA, the messages mainly include two types of information:
one is the negotiation primitives and another is the negotiating cooperation contract.
The negotiation primitives are defined in our previous work in [7], but as our work
proceeds, we change some primitive definitions. Table 1 illustrates the new primitive
definitions. The cooperation contract includes the negotiation objective the agents
negotiate, i.e., the attributes of some tasks, such as price, effort, quality, etc. The
messages the negotiating agents send in each bilateral negotiation consist of a
negotiation thread. This is, in an MNM-PA based negotiation, the number of the
negotiation threads is same as the number of the bilateral negotiation. E.g., if there are
10 bilateral negotiations between the negotiation initiator and the responders, there
are 10 negotiation threads. The length of each negotiation thread increases as the
many bilateral negotiation processes proceed. MNM-PA defines the concept of the
negotiation interaction to represent the multilateral characteristic of the one-many
negotiation. A negotiation interaction represents one round of the interaction between
the negotiation initiator and all the responders, i.e., the initiator sends messages to all
the responders and then receives all the responding messages from them with regards
to those messages it sends. Thus, it consists of the messages from different

150 N. Li et al.

Table 1. Negotiation primitive

Propose_N Propose a negotiation request
Accept_N Accept a negotiation request
Reject_N Reject a negotiation request
Propose_CC Send the initial CC
Accept_CC Accept the CC received last without further modifications
Modify_CC Modification to the CC received last
Terminate_N Terminate the current negotiation thread

negotiation threads. In different negotiation threads the messages are not labeled by a
sequential time point but also by a sequential “interaction” number, which denotes
which interaction they belong to.

The controlling is done by the multilateral negotiation protocol and the negotiation
strategies. The multilateral negotiation protocol is the public constrains all negotiating
agents must comply with. The negotiation strategies are private. Each agent has their
own negotiation strategies to make decisions. In the following of this section the
details about them will be presented.

3.1 Multilateral Negotiation Protocol

The multilateral negotiation protocol defines the public constrains all negotiating
agents must comply with. It can be visualized by a state chart (Fig. 2).

S2
Propose_N

Accept_N

Reject_N/

Terminate_N

S3
Propose_CC

Terminate_N

S4

Modify_CC

EndThr-End

Accept_CC

Propose_N

Thr-

End Thr-End

Start S1

Terminate_N
Accept_CC

Fig. 2. Multilateral Negotiation Protocol (iNPrim → denotes that the primitive is sent by the
negotiation initiator, iNPrim→ denotes that the primitive is sent by the responder, and iNPrim
denotes that it could be sent by either of them)

As Fig. 2 illustrates, negotiation agents have seven types of negotiation
states. Start is the start state, End is the end state, 1S , 2S , 3S , 4S is the middle states,
Thr-End is the end state of a negotiation thread. The arrows in Fig. 2 denote the state
transition. Two additional explanations are: (1) the state transition from 3S to 4S
could be without any negotiation primitives sent/received; (2) in state 4S when the
negotiation initiator sends an Accept_CC to a process agent, it also sends
Terminate_Ns to all the others and thus the whole negotiation process ends, i.e., the
negotiation transits to the state End.

According to the above protocol, an MNM-PA based negotiation process has there
phases: the starting phase, the negotiating phase and the ending phase. From state

 Start to 2S is the starting phase, where the negotiation initiator in state Start and

 A Multilateral Negotiation Method for Software Process Modeling 151

1S tries to set up the negotiation relationship with other process agents by sending the
negotiation request Propose_Ns to them and starts several negotiation threads. When
it receives the primitive Accept_Ns from some process agents who accept the
negotiation request, it builds up one multilateral negotiation. If the negotiation
initiator receives Reject_Ns from some process agent, the negotiations thread between
them end.

From state 2S to 3S (including from 3S to 3S) is the negotiations phase. In state
 2S and 3S , in all bilateral negotiations, the initiator and the responders alternate

making and sending the values of the task attributes until (1) at least a negotiation
responder sends Accept_CC indicating acceptance of the task attribute values sent by
the negotiation initiator, and then negotiation enters into state 4S , or (2) at least one
cooperation contract received by the negotiation initiator is acceptable according to
the initiator’s negotiation strategy and in this case no negotiation primitive needs to
be sent and negotiation goes to state 4S . Notice that the state transmitting from 3S to

4S is decided by the negotiation initiator.
From state 4S to state End is the ending phase, where when the negotiation

initiator sends an Accept_CC to a negotiation responder to indicate allocating the task
to it, and sends Terminate_Ns to all the other negotiation responders, the negotiation
process ends in terms of the given task.

In the start phase, the negotiation initiator can terminate any negotiation thread by
sending Terminate_N, and the negotiation responders can terminate their negotiation
threads by sending Reject_Ns. In the negotiating phase, both the two parts can
terminate the negotiation thread by sending Terminate_N to the other.

3.2 Multilateral Negotiation Strategies

The multilateral negotiation strategies in MNM-PA mainly apply the evaluation
method and some tactics. Negotiating agents have their own evaluation functions and
tactics. They use them to privately make decision on their negotiation behaviors. The
evaluation functions are used to evaluate the other agents and the cooperation contract
the other agents offer. The tactics are used to computer the cooperation contract the
agent offers to the other agents. The tactics are designed to be able to adjust in terms
of some environment variants. In this section we give the negotiation strategies in
each negotiating phase mentioned above.

In the starting phase, the negotiating agents make decisions based on the evaluation
of the other process agents. According to the evaluation result, the negotiation
initiator chooses the process agents it wants to negotiate with and then send the
negotiation request to them; the negotiation responders make decide whether or not to
accept a negotiation request once they receive it from a negotiation initiator.

Strategy-Starting. Let 1n

a b

tM +
→

denote the message process agent a will send to

process agent b at time tn+1, ()b t
a aVpa K denote the evaluation value towards b by a at

time t (t
aK is the knowledge of a at time k, ()Vpa K is the evaluation function about

process agents), (())b t
a a aSatisfied Vpa K denote that whether or not ()b t

a aVpa K

152 N. Li et al.

satisfies the evaluation criteria of a, then the negotiation strategy in the negotiation

starting phase is (max
at denotes the time in the future by when the negotiation must be

completed for a):
max

1

_ ,

_ , (()) ()

_ , (()) ()

_ , (()) (

n a
b t

a a a
b t

a a a
b t

a a a

n
n

na b

n

t

Terminate N if t t

Propose N if Satisfied Vpa K True for the initiator

Accept N if Satisfied Vpa K True for the responder

Reject N if Satisfied Vpa K False for the responder

M =+
→

=

=

=

=)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

In the negotiating phase, the negotiating agents mainly make decisions on whether
or not to accept the cooperation contract the negotiating opponent offer, and if not
what cooperation contract they will offer. Specially, the negotiation initiator will
decide whether or not to enter the negotiation ending phase in each interaction. The
idea of the strategies in this phase is also based on the evaluation method. When a
process agent a receives a cooperation contract from b at tn, it firstly computes a new
cooperation contract it will probably send to b at tn+1 according to its tactics, and then
rates the new contract and that one it receives from b, using its scoring function. If the
score of the contract from b is grater than the score of the new contract, the contract
from b is acceptable. If a is a responder, it sends an Accept_CC to b. Once there is
one Accept_CC from a responder, the negotiation process enters into the ending
phase. If a is the initiator, the contract from b will be added to the set of the
acceptable contract list and then the negotiation process enters into the ending phase.
Under the case that the score of the contract from b is less than the score of the new
contract, if a is the initiator, it has to wait until it collects all the other messages from
the rest of the responders, and then make decision: if in this interaction there is no
acceptable cooperation contract received, nor the primitive Accept_CC (this indicates
the negotiation process is still in the negotiating phase), it sends the new contract to b;
if a is a responder, it also sends the new contract to b. The following is a relatively
formal description of the negotiation strategies:

Strategy-Negotiating. Let ()t t
a b a
n nVcc cc → denotes the evaluation value towards the

cooperation contract t
b a
ncc → that the process agent b sends to a at time tn (()Vcc CC is

the evaluation function about cooperation contracts), then the negotiation strategy in
the negotiating phase for the negotiation initiator is:

1

max

1
1

1 1

2

() ()

() ()

_ ,

_ , ,

, [] [1] _

_ , ,

n a
t
a bt

a b t t t t
a aa i i a

t t t t t
a aa b a b b a

n
n

n n n n

n n n n n

CC

V CC V C

CC V CC V C

Terminate N if t t

Propose CC if state S

if m m or Accept CC received

Modify CC if

M
+

+
+

+ +

→
→

→ →

→ → →

=
≤

>

⎧ =
⎪

=⎪⎪
⎨

∅ −⎪
⎪
⎪⎩

,

and for the negotiation responder is:
m ax

1

1 1

1

() ()

() ()

_ ,

_ ,

_ , ,

an
t t t t

a ab a b a
t t t t

a aa b b a

n n n n n
a b

n n n n n
a b

t

t

V C C V C

C C V C C V C

T erm in a te N if t t

A ccep t C C if

M o d ify C C if

M +

+ +

+

→ →

→ →

=
→

→

≤

>

⎧ >⎪
⎪
⎨
⎪
⎪⎩

.

 A Multilateral Negotiation Method for Software Process Modeling 153

In Strategy-Negotiating, 1n

a b

tM +
→

= ∅ indicates that in some interaction, there

exists a responder who agrees with the most recent cooperation contract the
negotiation initiator sends to it, or the initiator receives at least one cooperation
contract which satisfies its evaluation criteria, and the negotiation initiator sends
nothing to all the responders and the negotiation ending phase starts.

The key issues in Strategy-Negotiating are how to give the 1t
a b
nCC +
→ , the

cooperation contract to the negotiation opponents, and how to evaluation it (i.e., to
compare the new computed one with the one received). We first discuss how to
compute a cooperation contract. A cooperation contract consists of negotiation
objectives, which are the attributes of the task ready to be allocated by the negotiation
initiator. Therefore, knowing that how to computer the negotiation objectives knows
that how to gets the cooperation contract. In order to computer the negotiation
objectives, negotiating agents (whether the initiator or the responders) need to firstly
identify an acceptable interval of their values. E.g., for a negotiation objective io , an

agent identifies its acceptable value range [,]i iMax Min . In MNM-PA, it is the

negotiation initiator who gives the initial values of the negotiation objectives, i.e., the
initial cooperation contract, which is usually given by experience (e.g. the middle
value between the maximum and the minimum). Besides from the initial value, the

other 1t
a b
nCC →

+ is given according to the following algorithm:

Algorithm 1. Let ρ denote the basic tactic, τ denote the time-dependent tactic based
on ρ , ς denote the resource-dependent tactic similar to ρ , which are used to
computer the values of the negotiation objectives within the predetermined value

ranges; let aw
τ and aw

ς be the weights of τ and ς respectively that process agent a

identifies in a negotiation process, 1a aw w
τ ς+ = , 1nt

ia bo +

→ denote the value of io

(1 2{ , , ... }nO O O∈) that a is ready to send b at tn+1,
1nt

ia bo x+

→ denote 1nt
ia bo +

→ is derived

according to the tactic x ({ , , }ρ τ ς∈) , then 1nt
ia bo +

→ is computed by the following

formula (1), or by (1) and (2) successively:

1 1

1 1 1

(1)

(2)

n n

n n n

t t
i ia b a b

t t t
i i i ia b a a b a a bw

o o

o o o oτ ς

ρ

τ ς

+ +

+ + +

→ →

→ → →

=

= × + ×
 .

The following definitions define the three tactics in Algorithm1.

Definition 1. Let a
oimax and a

iomin denote the maximum and minimum value of the

negotiation objectives io determined by process agent a, a
iok denote a constant to

determine the negotiation objectives (given by experience), a
ioV denote the

evaluation function of a about io (for simplicity either monotonically increasing or

monotonically decreasing), 2 1 2
..., , , , , ...{ }i i i i

tn tn tn tn
b a a b a b b ao o o o− − +
→ → → → be the negotiation thread

154 N. Li et al.

between a and b be with regard to the negotiation objectives io , then the basic

tactics ρ to give the value 1tn
ia bo +

→ is defined as:

1
min(, x ,),

max(x , ,),

i

i

i

oi a oi t oi
a a aoi b at

a b oi a oi t oi
a a aoi b a

n
n

n

min n k ma if V descreasing

ma n k min if V increasing

o
o

o
ρ+ →

→
→

=
⎧ + ×⎪
⎨

− ×⎪⎩

.

Definition 2. Let the value of negotiation objectives io determined by ρ be 1nt
ia bo ρ+

→

(see Definition1), the time function be
1

1
(,)

()
max

n a
n

max
a

min t t
f t

t

+
+ = , max

at denote the

time limit of the process agent a to finish the negotiation, 10 max
n at t+≤ ≤ , then the

time-dependant tacticsτ is defined as:

,

,

1

1

1

1

1

1

1
1

()(2)
,

() 1

()(2)
,

() 1

()(2)
,

() 1

i

o o on t oa a a i aa bn

o o on t oa a a i aa bn
ti t o oa b n i a aa b ian

not exist

not exist

i i i
n i

i i i
n

n
n i i

f t max min min
o V descreasing

f t

f t min max max
o V increasing

f t
o

f t o min min
o

f t

ρ
τ

−

−

=
−

+
→+

+
→+

→ + →
→+

+
+

+
+

+
+

+
+

,

,
1

1

1()(2)
,

() 1

i

i

t o
ab

t o on i a a t oa b i aa bn

exist

exist

n

n i i
n

V descreasing

f t o max max
o V increasing

f t

ρ −+ →
→+

+

⎧
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪ +
⎪

+⎪⎩

Definition 3. Replace the function 1()nf t + in the Definition2 with the function

()
1() (1)

a

i i

a a N t
n o of t c c e−

+ = + − (()aN t is the number of the process agents who

negotiates with the process agent a at t), then we get the resource-dependant tactics

ς , i.e. 1nt
ia bo ς+

→ .

As the above definitions indicate, the time-dependent tactic τ is an adjustment of
the basic tactic ρ in terms of negotiation time. When time is tight, the negotiating
agents will make a rapider compromise in order to reach an agreement quicker. The
resource-dependent tactic ς is also an adjustment of ρ in terms of the number of
participant agents in a negotiation process the agent knows. The larger number of the
negotiating process agents with a process agent, the less pressure of the process agent
and the smaller compromise it makes. Algorithm1 also gives the flexibility the value
of negotiation objectives can be counted by either taken the environmental elements
(i.e., the time or the resource) into account or not.

After knowing how to get a cooperation contract (by Algorithm1), which consists of
several single negotiation objectives (and their values), we need to know how to
evaluate it. A cooperation contract usually consists of more than one negotiation
objectives, such as the price, the time schedule or period, LOC, the quality of
documents, etc. They are sometimes dependent each other, and sometimes independent.
When it is the case of the former, the evaluation of them becomes complicated. Here we
give an evaluation function about the cooperation function, used by us in the simple

 A Multilateral Negotiation Method for Software Process Modeling 155

case, i.e. the latter case that the negotiation objectives are independent each other. The
algorithm mainly refers to the additive scoring system in [11]:

Definition 4. Let a cooperation contract be 1 2{ , , ... }nCC O O O= , ()i
iaV o be the

evaluation function of process agent a to about the negotiation objectives ([1,])i i no ∈

(for simplicity either monotonically increasing or monotonically decreasing), io
aW be

the weigh that a identifies for io ,
1

1
n

i

io
aW

=
=∑ , then the evaluation function of a

about the cooperation contract CC is defined as () (1) ()ia
k o i

a a
iVcc CC W V o= − ,

where if ()ii
aV o is monotonically increasing, then k=0, and if ()ii

aV o is

monotonically decreasing, then k=1.
When a negotiation process enters into the ending phase, the main negotiation

behaviors are to choose the final task executer by the negotiation initiator and then
send the negotiation result to all the responders. The idea of the strategy is to evaluate
all the acceptable cooperation contracts sent from the responders and the cooperation
contracts sending to the responders and receiving Accept_CCs from them in the
interaction immediately before the ending phase, and then choose one.

Strategy-Ending. Let i ([1,]n∈) be the responder who sends the Accept_CC to the

negotiation initiator a, or whose cooperation contract is acceptable, then in the
negotiation ending phase the negotiation strategy for the negotiation initiator is:

1

1

1

_ , _ ,

((

((

()

(

) ()([1,],)

) ()

n

a ia k
cc

a
n

i al a
i

n
cc

a i a i a
i

t
a i Max

Min

Accept CC Terminate N

V cc V cc

V cc V cc

i k

if V descreasing and

l n l or

if V increasing and

M +

→→

→→
=

→ →
=

→

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

=

≠

= = ≠ ∅

=

U

U

Strategy-Ending assumes that there is no more than one best cooperation
contracts. But the case there is more than one best often happens. In this case, i.e.,
more than one cooperation contracts are evaluated as the best by the negotiation
initiator (this also includes the case when the same cooperation contract sent by the
initiator is accepted by more than one responders), either do an evaluation of these
responders, or give a more strict evaluation function of the negotiation objectives to
do a further evaluation.

Given all the definitions above, when t>tmax, negotiation threads end, or when
1() ()t tV cc V cc+ ≤ , the negotiation process ends, therefore, in a limited time, i.e.

0<=t<=tmax, the proposed negotiation model and specified negotiation strategies can
guarantee the end of a negotiation process.

With regard to the question that whether the negotiating process agents can reach
an agreement about the values of negotiation objectives, obviously, a basic
assumption must be satisfied: for a negotiating process agent a and b,

156 N. Li et al.

[,] [,]o o o o
a a b b

i i i imax min max min ∅∩ ≠ (io 1 2,..., nCC={O ,O O }∈) must hold. Because

process agents might use different tactics to make the values of negotiation objectives,

i.e. the different values of ,a aw w
τ ς will result in different compositional tactics, even

though the above basic assumption holds, the analysis that whether a negotiation

process with (,)a a a aw w
τ ττ ς× × and (,)b b b bw w

τ ττ ς× × can reach an agreement

compositional tactics is complicated. But if they only use the basic tactic ρ , under

the basic assumption mentioned above, an agreed cooperation contract can be
reached.

4 An Example

MNM-PA is implemented in SoftPM, the software development environment we
develop. In this section we give an example to explain how MNM-PA works. Due to
the page limit, we only give how the process agents negotiate with regards to one task
A whole software process for a software project can be constructed in the same way,
which is finally a task “tree”, i.e. the tasks and the subtasks, with the responding task
executors, and the “promise” about them.

In the example there are three process agents, PM, M1, M2. For simplification and
an emphasis of the negotiating phase and the ending phase, we assume they build up
the negotiation relationship in the negotiation starting phase. Then, PM starts to
negotiate with M1 and M2 in terms of the three negotiation objectives of the given
task, which are the price, the work time and the quality.

Table 2 shows the value ranges of the negotiation objectives of the task the three
process agents determine (by their own historical data) respectively.

 Table 2. Value range of negotiation objectives Table 3. Weights of Negotiation Objectives

 PM M1 M2 PM M1 M2
Prc(rmb/day) 400-500 400-600 350-500 Prc 0.4 0.5 0.6

Prd(day) 20-24 20-30 18-24 Prd 0.3 0.2 0.2
Qul(level) 8-10 8-9 8-9

Qul 0.3 0.3 0.2

For simplicity, the three agents apply the formula (1) of Algorithm1 to computer

the cooperation contract, and the same parameter value of iok (see Definition1): 50

for the price, 1 for the work time and 1 for the qualification. PM sends the original
cooperation contract to M1 and M2 (ti denotes the time point of the system clock):

0 0 0 0 1

1 1 1 1 2{400, 20,10}{ , , }t t t t t
pm m pm m pm m pm m pm mCC CCprc prd qul→ → → → →= = =

When M1 and M2 receive them, they first compute 2
1

t
m pmCC → and 3

2
t
m pmCC → , and

then compare 2
1

t
m pmCC → with 0

1
t
pm mCC → , and 3

2
t
m pmCC → with 1

2
t
pm mCC → in terms of the

evaluation value based on Definition4, respectively.

 A Multilateral Negotiation Method for Software Process Modeling 157

In order to using Definition4, the evaluation function of each negotiation objective

should be defined. In the example, ()qul Value qulV = , and prcV and prdV are as the

following, respectively:

1, 25 0 3 0 0
1, 15 1 6; 7 , 2 7 2 8

2 , 3 0 0 3 5 0
2 , 1 7 1 8; 8 , 2 9 30

3, 35 0 4 0 0
3, 19 20 ; 9 , 3

4 , 4 00 45 0 ,

5 , 4 50 50 0

6 , 5 00 55 0

7 , 5 5 0 60 0

prc p rd

if p rc
if p rd if p rd

if p rc
if p rd if p rd

if p rc
if p rd if

if p rc

if p rc

if p rc

if p rc

V V

≤ <
≤ ≤ ≤ ≤

≤ <
≤ ≤ ≤ ≤

≤ <
≤ ≤

= ≤ < =

≤ <

≤ <

≤ ≤

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

1 3 2

4 , 21 2 2; 1 0 , 3 3 3 4

5 , 23 2 4;1 1, 3 5 36

6 , 2 5 2 6; 1 2 , 3 7 3 8

prd

if p rd if p rd

if p rd if p rd

if p rd if p rd

≤ ≤

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

Obviously for PM, prcV and prdV is monotonically decreasing, and qulV is
monotonically increasing, but for M1 and M2 it is reversal. Definition4 also need the
weights of the three negotiation objectives.Table3 gives them for the three agents.

Take the example of M1, according to Algorithm1, 1
1 {600,30,8}

t
m pmCC → = . Then

according to the evaluation functions defined above, prcV (600)=7, and timeV (30)=8

and qulV (8)=8. For the received one, prcV (400)=4, and timeV (20)=3 and
qulV (10)=10. The result is that 7 0.5 8 0.2 8 0.3 4 0.5 3 0.2 10 0.3× + × − × > × + × − × .

Therefore, M1 sends the new computed cooperation contract to PM. Similarly, M2
also sends the new computer one. When PM receives the cooperation contracts from
M1 and M2, respectively, it does the similar thing according to Algorithm1 and
Definition4, until the negotiation process enters the ending phase.

At the second interaction in the negotiation phrase, the evaluation of the
{450,23,9} received from M2 by PM is higher than that of the {500,22,9} to be sent
by PM, and the evaluation of the {550,29,9} received from M1 by PM is lower than
that of what PM wants to send. Therefore the negotiation process enters the ending
phase and only the cooperation contract {450,23,9} sent by M2 is used for the final
evaluation. Finally PM sends “Accept CC” to M2. According to the protocol, the
whole negotiation process finishes and PM allocates the task to M2, and the
constrains on the task are identified in the agreed cooperation contract with the price
of 450 RMB/Day, the work time of 23 days and the quality level of 9.

5 Conclusions and Further Work

This paper proposes a multilateral negotiation method for an agent-based software
process modeling. Bases on MNM-PA, the process agents representing the entities
involved in software processes, such as software organizations, development teams,
persons etc., can negotiate in distributed environments with regard to the tasks of a
given software project to reach agreements with the task allocation and the related
resource allocation. Compared with the traditional software process modeling, our
method provides an un-predefined software modeling and decision making support of

158 N. Li et al.

team formation with task and resource allocation for different software projects in
reality.

MNM-PA integrates negotiation with the one-time biding of the classic CNP, thus
supporting the both cooperative and competitive negotiation among the process
agents. MNM-PA defines all the main components including the negotiation
strategies to support a full life cycle negotiation process modeling of the process
agents. In particular, the negotiation strategies consider the environmental elements
thus adaptive to environmental changes.

Further work includes the experimental analysis of the proposed tactics to obtain
the best or better experience values of their weights, parameter values, etc., and the
comparison of the software processes constructed by our approach with those
constructed by real project mangers, for further improvement of MNM-PA.

References

1. X. Zhao, M. Li, Q. Wang, K. Chan, H. Leung. An Agent-Based Self-Adaptive Software
Process Model. Journal of Software, vol.15 (3), pp.348-359, 2004.

2. X. Zhao, K. Chan, M. Li. Applying Agent Technology to Software Process Modeling and
Process-Centered Software Engineering Environment. In Proceedings the 2005 ACM
Symposium on Applied Computing (SAC’05), pp.1529-1533.

3. Q. Wang, J. Xiao, M. Li, M. W. Nisar, R. Yuan, L. Zhang. A Process-Agent Construction
Method for Software Process Modeling in SoftPM. Q. Wang et al. (Eds.): SPW/ProSim
2006, LNCS 3966, pp. 204–213, 2006.

4. Q. Wang, M. Li. Software Process Management: Practices in China. M. Li, B. Boehm, and
L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 317–331.

5. User Manual of Software Management Platform for CMM/CMMI/ISO9000. Institute of
Software, Chinese Academy of Science, 2005.

6. P. Barthelmess. Collaborantion and Coodination in Process-Centered Software
Development Environments. A Review of the Literature. Information and Software
Technology, 45(13),pp.911-928,2003

7. N. Li, M. Li, Q. Wang, S. Du. A Negotiation Model in an Agent-Based Process-Centered
Software Engineering Environment. In Proceedings of SEKE 2006 (The 18th International
Conference on Software Engineering and Knowledge Engineering), San Francisco, USA,
pp.664-669, 2006

8. T. Sanholm. An Implementation of the Contract Net Protocol Based on Marginal Cost
Calculations. In Proceedings of the Eleventh National Conference on Artificial
Intelligence, pp.256--262, 1993

9. S. Paurobally, P.J. Turner, N.R. Jennings. Automating Negotiation for M-Services. IEEE
Transaction on Systems, Man, and Cybernetics-Part A: Systems and Humans, 33(6),
pp.709-724, November 2003.

10. C. Sierra, P. Faratin, N.R. Jennings. A Service-Oriented Negotiation Model between
Autonomous Agents. In Proceedings of 8th European Workshop on Modeling
Autonomous Agents in a Multi-Agent World, pp.17-35, Ronneby, Sweden, 1997.

11. H. Raiffa. The Art and Science of Negotiation. Harvard University Press, Cambridge,
USA, 1982.

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 159–168, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Distributed Global Development
Parametric Cost Modeling

Ray Madachy

University of Southern California Center for Systems and Software Engineering
941 W. 37th Place, Los Angeles, CA, USA

Cost Xpert Group, Inc.
3131 Camino Del Rio N., San Diego, CA, USA

madachy@usc.edu

Abstract. Geographically distributed development processes are becoming ever
more pervasive on modern software projects. Software is developed collabora-
tively in multiple locations around the world, and projects are being contracted
out in whole or part for economic leverage. Projects are often split among dis-
tributed teams, where the teams contribute different portions of work per phase
to take advantage of their skill sets and rates. Thus there is a need for new pa-
rametric cost estimation models where effort multipliers are phase-sensitive.
Working with industrial partners, a unique model has been developed to better
estimate globally distributed projects where work is allocated by phase, rather
than along the lines of specific functionality. The distributed development
model allows for work distribution by phase per team (and per module), differ-
ent environmental characteristics of the teams, localized labor categories,
calendars, compensation rates and currencies for costing. It also provides a gen-
eralized scheme for user-defined global lifecycle processes that include cali-
brated effort and schedule distributions. A representative example project
shows primary inputs and some fine-grained outputs available with the model.

Keywords: Distributed development, global software development, parametric
cost modeling, cost estimation, COCOMO, Detailed COCOMO, phase-
sensitive effort multipliers, software lifecycles, distributed teams, labor distribu-
tion, subcontracting.

1 Introduction and Background

Economic trends are disrupting software business models as geographically distributed
development is becoming ever more pervasive on modern software projects [1]. Soft-
ware is developed collaboratively in multiple locations around the world, and projects
are being contracted out in whole or part. This results in needs for new estimation mod-
els of distributed development processes. The Cost Xpert Group has developed a unique
and innovative model to better estimate globally distributed projects with the support of
the USC Center for Systems and Software Engineering (USC-CSSE).

Processes are becoming increasingly distributed by geography and company in
many sectors. These new projects are typified by outsourcing, or on-shore and off-
shore work. Some projects are executed 24/7 around the globe as teams handoff their

160 R. Madachy

work between shifts. Projects are often split among different contractor teams with the
teams contributing different portions of work and skill sets per phase.

The new model adapts traditional cost estimation formulas for distributed teams by
using phase-sensitive effort multipliers. A project can be defined in terms of the dis-
tribution of software work by phase per team. The unique attributes of each team are
also used in the calculations for more detailed and accurate estimates. Without these
new capabilities, distributed teams could not estimate and create plans with enough
detail to split out the expected workloads and labor costs. Currently there are no other
estimation models or tools with this capability.

It addresses the important software industry growth in developing nations such as
India or China, with increasing distributed team development and off-shore arrange-
ments with other contractors or customers.

The model is especially powerful in conjunction with an enhanced lifecycle
scheme for unlimited phases. Cost Xpert has generalized its cost and schedule mod-
els for flexible user-defined lifecycle processes.

1.1 Industry Collaboration

The model has been developed based on extensive collaboration with industrial part-
ners practicing distributed development processes. Over the last few years, affiliates
of USC-CSSE and Cost Xpert customers have expressed an increasing need for model
extensions covering distributed processes. Traditional parametric models such as
COCOMO II [2] cannot account for the effort variance due to different teams, nor
provide insight at the detailed level for project planning and execution these compa-
nies want.

Examples of major global companies helping with the model include Unisys, Wipro
Technologies and Cognizant Technologies. Companies are using the model in its cur-
rent spreadsheet form (until it is included in a future Cost Xpert product update), and
data is also being collected for further model validation and local calibrations.

2 Model Overview

Foundations of the new model are allowing the variation of effort multipliers by phase
and a separation of factors for local vs. global project attributes. The Cost Xpert
model is based on COCOMO II [2], and the extension for distributed development is
a modern generalization of the Detailed COCOMO model [3] that provides fully
flexible user-defined phases. The new model partitions the cost drivers between local
team-level and global project-level attributes. It also allows team-level labor category
distributions per phase with local hourly rates and currencies to be defined.

Detailed COCOMO allows for cost driver effort multipliers to vary by phase, but
the Cost Xpert model provides greater flexibility than Detailed COCOMO because
the latter is defined for only four fixed waterfall phases circa 1981. The Detailed
COCOMO model adds another layer of complexity on top of Intermediate COCOMO
[3], upon which COCOMO II is based. The phase-sensitive multiplier framework is
not been implemented in other COCOMO-based vendor estimation tools. The new
model leverages the phase-sensitivity of effort multipliers to capture the variance due
to different team characteristics by phase.

 Distributed Global Development Parametric Cost Modeling 161

The distributed development model is comprised of the following elements:

• The notion of a Team consisting of personnel environmental factors and labor
parameters. Each team is defined in the estimate by rating the people related
factors and providing labor categories, rates, labor distributions and working
calendar parameters.

• The Cost Xpert lifecycle model [4] which allows for user-defined phases that
are transformed into a Work Breakdown Structure (WBS) for detailed project
plans [5]. The lifecycle is also described in terms effort and schedule distribu-
tions across phases.

• A new team distribution capability where their distributions can be assigned to
individual phases defined by the lifecycle.

• The Cost Xpert multiple module effort model which allows for size and envi-
ronmental factors to be assigned to individual modules.

• A revised labor costing model accounting for localized labor distributions, rates
and currencies.

Adding the dimension of cost on top of effort is an important differentiator for
these global project types. The effort profiles alone don't tell the project story given
the radical differences in team cost structures across the globe. These disparities are
normally the bottom line economic rationale for global outsourcing strategies. When
the differences in rates are accounted for then the model allows a robust range of
"what if" experimentation in terms of teaming strategies. Following are more
differentiators of the model for distributed, global development processes.

2.1 Work Allocation by Phase vs. Module

Large projects are more frequently distributing work among teams by phase, rather
than along the lines of software components or specific functionality. For example,
global companies may perform early definitive work in inception and elaboration
onshore where domain expertise lies while using offshore resources for the bulk of
construction. This work allocation is increasingly feasible with improved software
methodologies (including model-driven approaches), documentation and toolsets that
support the entire lifecycle. New group collaboration technology allows improved
coordination across the distances.

The Cost Xpert distributed development model reflects this new reality in its as-
sumptions. Individual module-level inputs are used to derive the total phase estimates
and work allocation across teams is calculated per phase.

2.2 Different Working Calendars

Different working calendars can also be defined for each team. Other software cost
models are limited to a single value for hours per person-month (HPM) on a project.
The HPM parameter represents the standard number of working hours for an average
month and is used in effort and schedule calculations.

Cost Xpert has extended its model algorithms to allow for different working calen-
dars on a project for multiple teams. Revisions were made to allow for multiple
HPMs for the different teams in the effort equations, and the schedule formulas were

162 R. Madachy

modified to synchronize the integrated activities over time. The COCOMO II HPM
default is 152 hours and other models use 160 hours, but some projects we have dealt
with have teams operating at 190 HPM.

2.3 Effort Multiplier Variation by Phase

Parametric model effort multipliers are traditionally invariant across phases, which is
a macro approximation. The phase-sensitive effort multiplier framework allows for
more sophistication and fidelity of estimates whereby each environmental factor can
have unique multiplier settings for each phase. Examples include the Required Soft-
ware Reliability cost driver where the relative effort impact varies more between the
low and high settings for downstream integration and test activities compared to up-
front lifecycle activities [3], or a custom factor for peer reviews that increases effort in
elaboration but decreases it in construction [6]. In these cases the internal multipliers
can vary by phase.

Besides distributed team processes, phase-sensitivity supports another common
scenarios for rating of environmental cost factors by phase. Projects with long time
horizons will likely have important factors vary over the duration. These may include
experience factors accounting for learning, factors for planned process and tool im-
provements, platform factors to account for developing hardware or planned platform
changes, anticipated project/organization disruptions and other factors. For example
if experience factors are averaged across a long project lifecycle instead of by phase,
then the project plan will be imbalanced with understated staffing needs in the begin-
ning and overstated levels towards the end.

2.4 Algorithm Overview

The model refines COCOMO II formulas for phase-specific effort multipliers, team
work distributions and local team attributes. On top of that it extends it for labor
category distributions to provide more fine-grained outputs for personnel resource
planning. The standard top level effort formula for COCOMO is

∏
=

=
N

i
i

B EMSizeAEffort
1

** .

(1)

Where

• Effort is in person-months
• A is a constant derived from historical project data
• Size is in KSLOC (thousand source lines of code), or converted from other

size measures
• B is an exponent for the diseconomy of scale dependent on additive scale

drivers
• EMi is an effort multiplier for the ith cost driver. The geometric product of N

multipliers is an overall effort adjustment factor to the nominal effort.

The top level effort is decomposed in the new model for each phase, team, labor
category, and then aggregated across the same dimensions and time periods deter-
mined by the schedule outputs. The changed effort algorithms sum the effort across

 Distributed Global Development Parametric Cost Modeling 163

phases, where each phase accounts for effort multipliers unique per phase. The result-
ing effort phase distribution may differ from the default lifecycle distribution due to
differences in the team cost drivers being unevenly weighted within the phases.

To get phase-level estimates, first the nominal (unadjusted) effort for each phase in
the project is determined with

.**% B
ppNOM SizeAEffortEffort = (2)

where Effort% p is the nominal percent of lifecycle effort in phase p. The new model

uses the team distributions per phase and their local effort multipliers to calculate an
adjusted effort for each team in each phase per

.*%*
1

, ∏
=

=
N

i
i t,ptpNOMp t,ADJ EMEffortEffortEffort

(3)

where Effort% t, p is the percent of lifecycle effort for team t in phase p, and the effort

multipliers are those unique to team t. The adjusted effort outputs from Equation (3) are
summed up across teams for each phase, matrixed with their labor distributions, then
finally spread over time per the phase schedule spans to get detailed labor outputs.

An outline of the steps to provide fine-grained and top-level outputs using the re-
vised effort equations follows:

• Calculate unadjusted project effort per phase
• For each team

o Calculate unadjusted effort
o For each phase

 Distribute basic effort across phases with nominal lifecycle
distribution percentage

 Calculate adjusted effort per phase with phase-specific ef-
fort multipliers

• For each phase
o Sum the effort across all teams

• Calculate the adjusted lifecycle effort and schedule distribution
• Calculate the normalized lifecycle effort and schedule distribution
• For each time period

o Calculate effort for current phase
o Decompose effort by team

• For each team
o For each labor category

 For each time period
• Allocate the portion of team effort

o Add up the effort for all labor categories
o Add up the cost for all labor categories

• For each time period
o Add up the effort for all teams
o Add up the effort for all teams

• Aggregate the team results by phase for project-level phase outputs.

164 R. Madachy

2.5 Project Estimation Example

This section illustrates an example usage of the model for a representative project for
a large systems integrator, and shows some of the different outputs available. In this
scenario a company is developing a project distributed globally across North Amer-
ica, Europe, China and India. The internal supply chain system will be transitioned to
use at the North America and Europe sites.

The project has chosen to standardize its global lifecycle process based on the Ra-
tional Unified Process (RUP) [7], [8]. A global lifecycle based on RUP is defined for
the project per Fig. 1. In this example the default RUP effort and phase distributions
from COCOMO II [2] and [8] are used, but could be based on other calibrations.
Additionally any number of phases could be defined for a lifecycle.

Global Lifecycle

Name Rational Unified Process

Phase Effort (%) Schedule (%)
Inception 5.0% 10.0%
Elaboration 20.0% 30.0%
Construction 65.0% 50.0%
Transition 10.0% 10.0%
TOTAL 100.0% 100.0%

Fig. 1. Defining global lifecycle

Fig. 2 shows the top-level project definition with how work will be distributed in
terms of percentage of software by each team for the defined lifecycle phases. For
simplicity in this example, we will not show individual modules but will aggregate
them into a single size measure.

Project Name Supply Chain Distributed Project

SLOC 105000

Start Date Jan-07

Team Inception Elaboration Construction Transition
North America 70% 50% 5% 20%
Europe 30% 35% 5% 30%

India 0% 15% 60% 40%

China 0% 0% 30% 10%

Totals 100% 100% 100% 100%

Fig. 2. Defining size and work distribution

 Distributed Global Development Parametric Cost Modeling 165

Each team also defines its personnel factors, labor calendars, labor categories and
rates with local currencies. Examples of the personnel factors and labor categories
are shown in Fig. 3 and Fig. 4. These are the subset of environmental cost factors
related to people that may vary by team. The rest of the cost factors for product, plat-
form and project attributes generally apply to the project at-large (or individual
modules) and are not shown.

North America Team

Personnel Environmental Factors

Analyst Capability 1

Programmer Capability 2

Personnel Continuity 3

Applications Experience 3

Platform Experience 3

Language and Tool Experience 3

Very High

Nominal

High

Nominal

Nominal

Nominal

Fig. 3. Rating personnel factors for North America team

Labor Parameters

Hours / Person-Month 182

Resource Distribution
Labor Category

Phase

Software
Engineer

Senior
Software
Engineer

Quality
Assurance
Engineer

Management

Inception 20.0% 55.0% 15.0% 10.0%
Elaboration 30.0% 40.0% 20.0% 10.0%
Construction 50.0% 10.0% 30.0% 10.0%
Transition 40.0% 20.0% 30.0% 10.0%

Cost Per Hour Rs. 1800 Rs. 2000 Rs. 1540 Rs. 2500(Rupee)

Fig. 4. Defining labor parameters for India team

Fig. 5 shows the top-level effort, schedule and cost outputs for the entire project.
The costs can be viewed for any chosen currency used by the teams. Additionally the
per-team slices can be displayed. The resulting effort and schedule for the project are
reflected in an overall staffing profile, and project plan portions for individual teams

166 R. Madachy

 Effort Schedule
(PM) (Months) Cost

Inception 24.2 2.7 257,550$
Elaboration 105.6 8.8 1,123,085$
Construction 331.2 14.2 3,523,819$
Transition 56.1 3.1 596,491$

Totals 517.0 28.8 5,500,945$

(Dollars)

Fig. 5. Top-level outputs

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Month

P

er
so

n
n

el

North America - Inception North America - Construction
North America - Elaboration Europe - Inception
North America - Transition Europe - Transition
Europe - Construction Europe - Elaboration
India- Inception India - Elaboration
India - Construction India - Transition
China- Inception China - Elaboration
China - Construction China - Transition

Fig. 6. Top-level staffing profile

are also available. Fig. 6 shows the overall staffing profile, with staffing decomposed
by phase and team.

Estimates and staffing plans are also available on a more detailed level for each
team. Fig. 7 shows the portion of the staffing plan for the North America team using
the labor categories defined for that team alone. The personnel levels correspond to
the work portions for the team by phase, and are adjusted for their environmental
factors (i.e. cost drivers) and local calendars in terms of hours worked per month.

However the profiles of different teams may vary widely across the phases, and are
necessary to have for more detailed planning. Fig. 8 shows the detailed staffing pro-
file for the India team. It includes the specific labor categories used on that team, and
the effects of the India team personnel factors on effort throughout the lifecycle.

 Distributed Global Development Parametric Cost Modeling 167

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Month

P

er
so

n
n

el
Strategist Analyst Designer Programmer

Test/QA Copywriter Art & Media Management

Fig. 7. Staffing profile for North America team

0

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Month

P

er
so

n
n

el

Software Engineer Senior Software Engineer
Quality Assurance Engineer Management

Fig. 8. Staffing profile for India team

Costs in local currency are also available. Without this team-level planning detail, the
individual teams would not be able to derive executable plans for their work portions.
All team plans can also be exported to Microsoft Project format for project execution.

3 Conclusions and Future Work

Globally distributed processes require new estimation models. The capabilities to
allow variation of effort multipliers by phase and to account for other parametric team

168 R. Madachy

differentiators are model innovations that provide substantial benefits to organizations
involved in distributed software processes. They support critical business needs by
enabling users to better model realistic estimation and planning scenarios. When
providing more detail by phase the resulting estimates are also likely to be more accu-
rate. These improvements support higher fidelity estimates and better balanced pro-
ject plans with sufficient detail for execution.

Feedback from users and evaluators is promising, and the model is being enhanced
further. It is currently implemented in a spreadsheet, with a few hardwired restric-
tions such as the available number of phases, teams or labor categories. It will be
generalized more when it is included in future product updates of the Cost Xpert
software estimation tool. A number of other features are under consideration. One is
the capability for users to re-partition the cost drivers for other factors that may vary
by team.

We are providing the spreadsheet model to USC-CSSE affiliate companies, Cost
Xpert customers and others upon request. Interested parties may contact the Cost
Xpert Group for further information and to obtain the spreadsheet (it runs on Micro-
soft Windows, Macintosh and Linux operating systems and requires Microsoft Excel
or OpenOffice Calc). We are also soliciting additional data on distributed global
projects for further model calibration and validation.

References

1. Boehm, B.: “The Future of Software Processes”, Proceedings of the International Software
Process Workshop, SPW 2005, Springer-Verlag, (2005)

2. Boehm, B., Abts C., Brown A., Chulani S., Clark B.,Horowitz E., Madachy R.,Reifer D.,
Steece B.: Software Cost Estimation with COCOMO II, Prentice-Hall (2000)

3. Boehm, B.: Software Engineering Economics, Prentice-Hall (1981)
4. Cost Xpert Group: “Cost Xpert Lifecycle Model”, White Paper, Cost Xpert Group, San

Diego, CA (2005)
5. Cost Xpert Group: “Cost Xpert Work Breakdown Structure”, Internal White Paper, Cost

Xpert Group, San Diego, CA (2005)
6. Madachy R.: Software Process Dynamics, IEEE Computer Society Press (2007)
7. Kruchten, P.: The Rational Unified Process, Addison-Wesley (1998)
8. Royce W.:, Software Project Management - A Unified Approach, Addison-Wesley, (1998)

Process Mining Framework for

Software Processes

Vladimir Rubin1,2, Christian W. Günther1, Wil M.P. van der Aalst1,
Ekkart Kindler2, Boudewijn F. van Dongen1, and Wilhelm Schäfer2

1 Eindhoven University of Technology, Eindhoven, The Netherlands
{c.w.gunther,w.m.p.v.d.aalst,b.f.v.dongen}@tue.nl

2 University of Paderborn, Paderborn, Germany
{vroubine,kindler,wilhelm}@uni-paderborn.de

Abstract. Software development processes are often not explicitly mod-
elled and sometimes even chaotic. In order to keep track of the involved
documents and files, engineers use Software Configuration Management
(SCM) systems. Along the way, those systems collect and store informa-
tion on the software process itself. Thus, SCM information can be used
for constructing explicit process models, which is called software process
mining. In this paper we show that (1) a Process Mining Framework can
be used for obtaining software process models as well as for analysing
and optimising them; (2) an algorithmic approach, which arose from our
research on software processes, is integrated in the framework.

Keywords: Software Process Mining and Management.

1 Introduction

Software and information systems are still becoming more and more complex.
One of the distinguishing features of any engineering effort is the fact that pro-
cess engineers create, change, update and revise all kinds of documents and files.
In order to cope with the vast amount of data, documents, and files, engineers
use Product Data Management (PDM) systems or Software Configuration Man-
agement (SCM) systems such as CVS or Subversion. In addition to maintaining
the engineer’s documents, these systems collect and store information on the
process: Who created, accessed, or changed which documents?, When was a
particular task completed?, etc.

The engineering processes themselves, however, are often not well-documented
and sometimes even chaotic: engineering processes tend to be far less structured
than production processes. In order to help engineers to identify, to better un-
derstand, to analyse, to optimise, and to execute their processes, the process
data stored in the SCM systems can be used for extracting the underlying engi-
neering processes and for automatically constructing one or more explicit process
models. We call this software process mining.

Process models and software process models cover different aspects. Here,
we consider the main aspects only: the control aspect captures the order in

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 169–181, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

170 V. Rubin et al.

which tasks are executed (i. e. the control-flow), the information aspect cap-
tures the data, documents, and information needed and produced by a task,
and the organisation aspect captures which persons in which role execute a task.
To mine different aspects of software development processes – sometimes called
multi-perspective mining – we need different algorithms. In order to make all
these algorithms available under a single user interface, we use the ProM frame-
work [1]. ProM provides a variety of algorithms and supports process mining in
the broadest sense. It can be used to discover processes, identify bottle-necks,
analyse social networks, verify business rules, etc. Moreover, ProM provides in-
terfaces to extract information from different sources including SCM systems
such as CVS and Subversion.

The focus of this paper is on providing an overview of the application of pro-
cess mining to software processes. Although we do not focus on the algorithms,
we discuss one process mining algorithm, which was specifically developed for
software processes and integrated in ProM. Moreover, we discuss in which other
ways ProM can help software engineers in dealing with their processes.

The remainder of this paper is organized as follows. First, we present related
work. Then, we discuss the application of process mining in software engineering
environments. Then, we provide an overview of process mining approaches and
the tool support offered by ProM. In Section 5 we show the application of process
mining to the Subversion logs of the ArgoUML project where we analysed five
subprojects. Section 6 concludes the paper.

2 Related Work

The capabilities of using software repositories for deriving information about
the software projects are being researched in the domain of mining software
repositories [2]. Like in our approach, SCM systems are used as sources of in-
formation. They are used for measuring the project activity and the amount of
produced failures, for detecting and predicting changes in the code, for providing
guidelines to newcomers to an open-source project, and for detecting the social
dependencies between the developers. In this area, SCMs are mostly used for
detecting dependencies on the code level, whereas we make an effort at building
process models and analysing them. Researchers and practitioners recognize the
benefits of software process modelling with the aid of software repositories [3,4].
Nowadays, process improvement should be ruled by what was actually done dur-
ing the software development process and not by what is simply said about it.
The researchers from this domain examine bug reports for detecting defect life-
cycles, e-mails and SCMs for analysing the requirement engineering processes
and coordination processes between developers, their productivity and partici-
pation, etc. Although this research direction deals with software processes and
their models, there is still a lack of algorithms for producing formal models.

In addition to the software process domain, the research concerning discover-
ing the sequential patterns treats similar problems in the area of data mining.

Process Mining Framework for Software Processes 171

The work of Agrawal and Srikant deals with discovering sequential patterns in
the databases of customer transactions [5].

Since the mid-nineties several groups have been working on techniques for
process mining, i.e., discovering process models based on observed events. In [6],
an overview is given of the early work in this domain. The idea to apply process
mining in the context of workflow management systems was introduced in [7].
However, we argue that the first papers really addressing the problem of process
mining appeared around 1995, when Cook et al. [8,9] started to analyse recorded
behaviour of processes in the context of software engineering, acknowledging the
fact that information was not complete and that a model was to be discovered
that reproduces at least the log under consideration, but it may allow for more
behaviour. More information on recent process mining research can be found at
http://www.processmining.org.

3 Process Mining for Software Engineering Environments

In this section, we first explain the traditional process-centered software engi-
neering environments (PSEE). Then, we present the ideas of the incremental
workflow mining approach.

3.1 Incremental Workflow Mining Approach

Figure 1 gives an overview of the architecture of a traditional PSEE and rep-
resents how our incremental workflow mining approach is integrated to this
architecture: The environment consists of software repositories (SCM system,
defect tracking system, etc...). The software product and the interaction among
practitioners are supported and maintained by the repositories. In the tradi-
tional schema, the Process Engineer (project manager or department) designs
the process model using his experience and existing approaches, like V-model,
RUP, etc. Then, the model is instantiated and practitioners follow it during the
product life cycle, indicated by the white arrows in Fig. 1. There are the follow-
ing problems with this schema: The designed process model does not necessarily
reflect the actual way of work in the company, human possibilities in detect-
ing discrepancies between the process model and the actual process are limited,
practitioners are not involved in the design of the process model.

The main ideas of the incremental workflow mining approach were described
already in our previous work [10,11]. In this approach we go the other direction,
it is shown with gray arrows in Fig. 1: We take the audit trail information
(document log) of the SCM system, which corresponds to the process instances
(particular executions of the process) and, using our process mining algorithms,
derive the process model from it. Then, the process model can be analysed,
verified and shown to the process engineer; he decides which changes should be
introduced to the process to optimise and to manage it in a better way. Actually,
the mining approach can be used not only for discovery, but also for monitoring
and improving real software processes using the data from software repositories
in general and SCM systems in particular.

172 V. Rubin et al.

Document

Log

Software

Process

Model

Practitioner Process Engineer,
Manager

Websites

NewsForums

E-mails

Defect Tracking System

Software Repositories

- Discovery
- Improvement

Software
Configuration

Management System

- Monitoring

Process

Mining

Fig. 1. Process-centered Software Engineering and Process Mining

In software engineering environments, it is usually difficult to introduce a Pro-
cess Management System (PMS) directly from scratch. Using our approach in
a batch mode, we gather the existing logs of several process instances and auto-
matically generate a model from them. Our approach works also incrementally,
i.e. as soon as new data is added to the repositories, we refine the overall process
model. Following this approach, the role of the PMS changes over time: at the
beginning, it is utilized only for storing the newly discovered models; after model
improvements, the system can start advising the users and controlling their work
in the company. We call this gradual process support.

3.2 Input Information

In this section, we focus on the logs of SCM systems and make our experiments
with them, but the approach and the algorithms are more general: They also
deal with the information derived from other software repositories.

In Table 1, we present an example of the audit trail information from an
SCM system. SCM systems record the events corresponding to the commits of
documents. A sequence of these events constitutes a document log: It contains the
names of the committed documents, timestamps, and author names. Document
logs with similar structure can be derived from all kinds of SCM systems, such

Table 1. Document Log

Document Date Author

project1/models/design.mdl 01.01.05 14:30 designer
project1/src/Code.java 01.01.05 15:00 developer
project1/tests/testPlan.xml 05.01.05 10:00 qaengineer
project1/docs/review.pdf 07.01.05 11:00 manager

project2/models/design.mdl 01.02.05 11:00 designer
project2/tests/testPlan.xml 15.02.05 17:00 qaengineer
project2/src/NewCode.java 20.02.05 09:00 developer
project2/docs/review.pdf 28.02.05 18:45 designer

project3/models/design.mdl 01.03.05 11:00 designer
project3/models/verification.xml 15.03.05 17:00 qaengineer
project3/src/GenCode.java 20.03.05 09:00 designer
project3/review/Areview.pdf 28.03.05 18:45 manager

Table 2. Filtered Log

Document

DES
CODE
TEST
REV

DES
TEST
CODE
REV

DES
VER
CODE
REV

Process Mining Framework for Software Processes 173

as CVS, Subversion, SourceSafe, Clear Case and others. When we analyse the
document logs, we have to identify the cases (process instances), identify the
document types, abstract from the details of the log, and ignore unnecessary
information. For many software projects, a case corresponds to a subproject or
a plug-in development, in our example it corresponds to a project development
(cases are separated with double lines in the tables). We detect the documents’
types by identifying similarities of their paths and names, see Sect. 4.1 for details.
The same technique is used for abstracting from the log details and for ignoring
noise, i.e. ignoring exceptional or infrequent commits. However, the latter issues
are also resolved on the algorithm level, see Sect. 4.2.

4 Process Mining Algorithms and Tool Support

In this section, we present the algorithms for multi-perspective software process
mining. In the area of process mining, there are different algorithmic approaches,
which derive the control-flow, the organization and the information models from
the event logs. The events in these logs correspond to process activities produced
by some PMS. In our application area, we have information about the commits
of documents which occur in SCM systems, but generally can also occur in other
systems, like PDM. All the presented algorithms are integrated as plug-ins to
the ProM tool [1], which is described at the end of this section.

4.1 Abstraction on the Log Level

The document logs often contain either too many details or very specific docu-
ment names and paths, which are not relevant for the process mining algorithms.
Thus, we need a technique to abstract from the concrete names and paths or
even to ignore some paths. We call this abstraction on the log level. The ProM
tool contains a set of filters, which help us solving this problem.

Here, we use the remap filter, which maps the names of documents from the
log to abstract names. Regular expressions specify the paths that should be
mapped to abstract names. For example, if the path contains “/models/”, the
filename contains “design” and has extension “.mdl”, then it should be mapped
to “DES”. Table 2 shows the result of this filter applied to the log of Table 1.

4.2 Control-Flow Mining

In this section, we describe the control-flow mining algorithms. When dealing
with the control-flow, the log can be represented as a set of sequences of docu-
ments (sequences are also called cases, traces or execution logs), see Table 2.

Generation and Synthesis Approach. The approach presented in this sec-
tion is a two-step approach: Step 1 takes a document log and generates a transi-
tion system (TS) from it; Step 2 synthesises a Petri Net (PN) from the transition
system. The algorithmic details of the approach are discussed in [12]. One of the

174 V. Rubin et al.

{}

{ DES }

{ DES,
TEST }

{ DES,
CODE }

{DES,TEST,CODE}

{DES,TEST,CODE,REV}

{ DES,
VER }

{DES,VER,CODE}

{DES,VER,CODE,REV}

DES

TEST CODE

CODE TEST

REV

VER

CODE

REV

VER

DES

TEST

CODE

VER REV

DES

TEST

CODE

VER REV

(a) (b)

(c)

Fig. 2. Generated and Synthesis Approach: (a) Transition Systems (b),(c) Petri Nets

main advantages of the approach is the capability to construct transition sys-
tems and, then, to apply different modification strategies depending on the de-
sired degree of generalization; we call this “clever” transition system generation
or abstraction on the model level. Despite the fact that transition systems are
a good specification technique for making experiments, they are usually huge,
since they encode such constructs as concurrency or conflict in a sequential way.
Thus, the algorithms developed within such a well-known area of Petri net the-
ory as Petri net synthesis and theory of regions [13] are used for transforming
transition systems to Petri nets, which are more compact.

The transition system shown in Fig. 2(a) with the solid arrows is constructed
from the log given in Table 2. In this example, a state is defined as a set of
documents representing the complete history of a case at a point of time. For
example, for the first case, there are such states as {}, {DES}, etc. There are
transitions between all the subsequent pairs of states, transitions are labelled
with the names of produced documents. Using the Petri net synthesis algorithms,
we generate a Petri net from the given TS, see Fig. 2(b). Events of the TS
correspond to the transitions of the PN. This Petri net has the same behaviour
as the TS; the concurrency of events TEST and CODE, which is modeled
sequentially in the TS, is specified more compact in the PN.

But we can also modify the constructed TS using some strategy. For exam-
ple, the “Extend Strategy” adds transitions between two states, which were
created from different traces but which can be subsequent because there is a
single document which can be produced to reach one state from the other.
As a result, we add one transition V ER from state {DES, CODE} to state
{DES, V ER, CODE}, it is shown with the dashed arrow in Fig. 2(a). A Petri net
corresponding to this TS is shown in Fig. 2(c). This Petri net is more general than
the first one; it allows an additional trace, namely 〈DES, CODE, V ER, REV 〉.

The first ideas of the generation and synthesis approach were presented in our
previous paper [14], then the algorithms were significantly improved and success-
fully implemented in the context of ProM; the tool Petrify [15] is used in the syn-
thesis phase. This approach overcomes many limitations of the traditional

Process Mining Framework for Software Processes 175

process mining approaches; for example, it can deal with complicated process con-
structs, overfitting (generated model allows only for the exact behaviour seen in
the log) and underfitting (model overgeneralises the things seen in the log). How-
ever, by now, this approach can hardly deal with noise (incorrectly logged events
and exceptions), since we do not consider the frequencies of cases in the log; so,
the other approaches that treat this problem, are presented in the next Section.

Other Approaches for Control Flow Mining. In the process mining domain
a number of algorithms for control flow mining have been developed, which
have different characteristics from the previously introduced approach; all these
algorithms can be also applied for mining the software processes.

The Alpha algorithm [16] can also derive a Petri net model from an event
log, however it is based on analysing the immediate successor relation between
event types, i.e. documents. Another algorithm, the Multi-phase approach [17],
creates Event-driven Process Chain (EPC) models from a log, while it first gen-
erates a model for each process instance and later aggregates these to a global
model. Both the Alpha and the Multi-phase algorithms share the generation
and synthesis approach’s precision, i.e. the generated model accurately reflects
all ordering relations discovered in the log.

While sophisticated filtering of logs can remove noise partially, there are also
process mining algorithms which are designed to be more robust in the pres-
ence of noise. The Heuristics Miner [18] employs heuristics which, based on the
frequency of discovered ordering relations, attempts to discard exceptional be-
haviour. Another approach in this direction is the Genetic Miner [19]. It uses
genetic algorithms to develop the process model in an evolutionary manner,
which enables it to also discover e.g. long-term dependencies within a process.

4.3 Mining Other Perspectives

Our generation and synthesis approach deals with the control flow, which is only
one perspective addressed in process mining. Such information as the timestamp
of an event or its originator (the person having triggered its occurrence) can be
used to derive high-level information about the process also in other perspectives.

Resource Perspective. The resource perspective looks at the set of people in-
volved in the process, and their relationships. The Social Network Miner [20]
for example can generate the social network of the organization, which may
highlight different relationships between the persons involved in the process,
such as handover of work, subcontracting and others. The Organizational Miner
also addresses the resource perspective, attempting to cluster resources which
perform similar tasks into roles. This functionality can be very beneficial in a
software development process, both for verification and analysis of the organiza-
tional structure. Mismatches between discovered and assigned roles can pinpoint
deficiencies in either the process definition or the organization itself.

Performance Perspective. Mining algorithms addressing the performance per-
spective mainly make use of the timestamp attribute of events. From the

176 V. Rubin et al.

combination of a (mined or predefined) process model and a timed event log,
they can give detailed information about performance deficiencies, and their lo-
cation in the process model. If some project phase is identified as the point in
the process where most time is spent, we could assign more staff to this task.

Information Perspective. The Activity Miner [21] can derive high-level activi-
ties from a log by clustering similar sets of low-level events that are found to
occur together frequently. These high-level clusters, or patterns, are helpful for
unveiling hidden dependencies between documents, or for a re-structuring of the
document repository layout.

4.4 Process Analysis and Verification

Process mining is a tremendously helpful tool for managers and system admin-
istrators, who want to get an overview of how the process is executed, and for
monitoring progress. However, in many situations it is interesting whether ex-
ecution is correct. To answer this question, there exists a set of analysis and
verification methods in the process mining domain. One of these techniques is
Conformance Checking [22], which takes a log and a process model, e.g. a Petri
net, as input. The goal is to analyse the extent to which the process execution
corresponds to the given process model. Also, conformance checking can point
out the parts of the process where the log does not comply.

Another technique is LTL Checking [23], which analyses the log for com-
pliance with specific constraints, where the latter are specified by means of
linear-temporal logic (LTL) formulas. In contrast to conformance checking, LTL
checking does not assume the existence of a fully defined development process.
Therefore, it can be used to successively introduce, and check for, corporate
guidelines or best development practices.

The ProM framework also features techniques for process model analysis and
verification in the absence of a log. Advanced process model analysers, such as
Woflan, can check e.g. a Petri net model for deadlocks (i.e., potential situations
in which execution will be stuck), or verify that all process executions complete
properly with no enabled tasks left behind. Process designers find these auto-
mated tools valuable for ensuring that a defined development process will not
run into problems which are hard to resolve later on.

4.5 ProM and ProMimport Tools

The ideas presented in this paper have been implemented in the context of ProM.
ProM serves as a testbed for our process mining research [1] and can be down-
loaded from www.processmining.org. Starting point for ProM is the MXML
format. This is a vendor-independent format to store event logs. One MXML file
can store information about multiple processes. Per process, events related to
particular process instances (cases) are stored. Each event refers to an activity.
In the context of this paper, documents are mapped onto activities. Events can
also have additional information such as the transaction type (start, complete,
etc.), the author, timestamps, and arbitrary data (attribute-value pairs).

www.processmining.org

Process Mining Framework for Software Processes 177

The ProMImport Framework allows developers to quickly implement plug-ins
that can be used to extract information from a variety of systems and convert
it into the MXML format (cf. promimport.sourceforge.net). There are stan-
dard import plug-ins for a wide variety of systems, e.g., workflow management
systems like Staffware, case handling systems like FLOWer, ERP components
like PeopleSoft Financials, simulation tools like ARIS and CPN Tools, middle-
ware systems like WebSphere, BI tools like ARIS PPM, etc. Moreover, it has
been used to develop many organization/system-specific conversions (e.g., hos-
pitals, banks, governments, etc.). The ProMImport Framework can also be used
to extract event logs from such systems as Subversion and CVS.

Once the logs are converted to MXML, ProM can be used to extract a variety
of models from these logs. ProM provides an environment to easily add plug-ins
that implement a specific mining approach. The most interesting plug-ins in the
context of this paper are the mining plug-ins. In addition to that, there are four
other types of plug-ins: Export plug-ins implement some “save as” functionality
for some objects (such as graphs). For example, there are plug-ins to save EPCs,
Petri nets, spreadsheets, etc. Import plug-ins implement an “open” functionality
for exported objects, e.g., load instance-EPCs from ARIS PPM. Analysis plug-ins
typically implement some property analysis on some mining result. For example,
for Petri nets, there is a plug-in which constructs place invariants, transition
invariants, and a coverability graph. Conversion plug-ins implement conversions
between different data formats, e.g., from EPCs to Petri nets and from Petri
nets to YAWL and BPEL. Altogether, there are 140 plug-ins for ProM.

The next section will illustrate the application of some of these plug-ins. How-
ever, since there are currently more than 140 plug-ins it is impossible to give
a representative overview. One of the mining plug-ins generates the transition
system that can be used to build a Petri net model. Note that for this particular
approach ProM calls Petrify [13].

5 Evaluation and Applications

In order to evaluate our approach, we have chosen the ArgoUML project, which
is an open-source UML modeling tool maintained by the Subversion SCM sys-
tem. Since this data is freely available, it makes an excellent test case for us.
ArgoUML has different subprojects with the same file organization; we have
chosen five subprojects which implement the ArgoUML support for five differ-
ent programming languages. We will use these five process instances to derive a
formal model of the control-flow, to analyse the organization structure and the
performance of the process, and to do some analysis and verification.

First, using the svn log utility provided by Subversion, we generated logs
for all the five subprojects and imported them to ProM. This log consisted of
about 400 commit events. The log contains project specific paths and differ-
ent commits, which are not relevant for the software process. Using the remap
filter, we replaced project specific paths with abstract names. Following the Ar-
goUML conventions, all the committed documents (files) containing “/src/” in

promimport.sourceforge.net

178 V. Rubin et al.

Fig. 3. Petri Net for the ArgoUML Project

Fig. 4. Performance Analysis Fig. 5. Conformance Analysis

their paths and have “.java” as an extension were mapped to “SRC”, all the
“readme.*” files – to “README”, all the files in “/tests/” – to “TESTS”, the
files in “/www/” – to “WWW”, “build.bat” – to “BUILDER” and all the files,
which names start with “.” – to “CONFIG”; the other commits were ignored.

After executing the algorithms of the generation and synthesis approach, we
obtained the Petri net shown in Fig. 3. Here, for the sake of readability, we show
a simplified Petri net without loops – which was obtained by applying the “Kill
Loops” modification strategy to the transition system and synthesizing a Petri
net from there. Thus, the Petri net focuses on the start events, i.e. when source
code development was started, when testing was started. People use to start with
building web sites or editing readme files and builders, then they write code and
then, they test it, sometimes builder file is changed after writing code.

The Petri net model of the development process can now be used for enhanced
analysis within the ProM framework. Figure 4 shows the result of a performance
analysis based on the mined model and the log. The states, i.e. places, have
been colored according to the time which is spent in them while executing the
process. Also, multiple arcs originating from the same place (i.e., choices) have
been annotated with the respective probability of that choice.

Further, a conformance analysis can be performed using the Petri net model
and the associated log. Figure 5 shows the path coverage analysis of the confor-
mance checker. All activities that have been executed in a specific case (in our
example we chose the C++ language support) are decorated with a bold border,
and arcs are annotated with the frequency they have been followed in that case.
This example shows, that the C++ team did not create a README file.

Process Mining Framework for Software Processes 179

Fig. 6. LTL Analysis Fig. 7. Social Network

One known software engineering concept is the “four eyes principle”, e.g.
developers working on the source code should not write tests as well. Figure 6
shows the result of checking a corresponding LTL formula on the ArgoUML log.
In the C++ support case, which is shown in Fig. 6, both source code and tests
have been submitted by the developer “euluis”, thereby violating this principle.

For determining the social network of a development process, it is preferable to
use the original log, i.e. before it has been abstracted like explained in Section 4.1.
The reason for that is, that it is also interesting when people collaborate within a
certain part of the project (e.g. writing source code), while one wants to abstract
from these activities on the control flow level. Figure 7 illustrates the hand-over of
work between ArgoUML developers. It shows that some developers are involved
only in specific phases of the project (e.g. “bobtarling” appears to work only
at the end of projects), while others (e.g. “tfmorris”) have a more central and
connected position, meaning they perform tasks all over the process. Based on
the nature of the project one may prefer different collaboration patterns, which
can be checked conveniently in a mined social network like this.

Altogether, we have shown that ProM can be used to mine interesting infor-
mation on a realistic software process. The filtering mechanism in combination
with the kill-loop mechanism gave us a quite simple explicit process model.

6 Conclusion

In this paper, we have discussed some new algorithms for mining software and
systems engineering processes from the information that is available in Software
Configuration Management Systems. These algorithms are included in the ProM
framework, which has interfaces to a variety of document management systems.
Therefore, ProM is now an effective tool for software process mining.

For evaluation purposes, we have mined the software processes of a real
project: ArgoUML. This shows that we can obtain the process models for real-
istic software projects. Moreover, we have shown that ProM could be used for
analysing and verifying some properties of these processes.

Acknowledgments. This research is supported by EIT, NWO, the University
of Paderborn and International Graduate School of Dynamic Intelligent Systems,

180 V. Rubin et al.

and the Technology Foundation STW, applied science division of NWO and the
technology programme of the Dutch Ministry of Economic Affairs.

References

1. van Dongen, B., Medeiros, A., Verbeek, H., Weijters, A., van der Aalst, W.: The
ProM framework: A New Era in Process Mining Tool Support. In Ciardo, G.,
Darondeau, P., eds.: Application and Theory of Petri Nets 2005. Volume 3536.
(2005) 444–454

2. MSR 2005 International Workshop on Mining Software Repositories. In: ICSE ’05:
Proceedings of the 27th international conference on Software engineering, New
York, NY, USA, ACM Press (2005)

3. Sandusky, R.J., Gasser, L., Ripoche, G.: Bug Report Networks: Varieties, Strate-
gies, and Impacts in a F/OSS Development Community. In: MSR 2004: Interna-
tional Workshop on Mining Software Repositories. (2004)

4. Iannacci, F.: Coordination Processes in Open Source Software Development: The
Linux Case Study. http://opensource.mit.edu/papers/iannacci3.pdf (apr 2005)

5. Agrawal, R., Srikant, R.: Mining sequential patterns. In Yu, P.S., Chen, A.S.P.,
eds.: Eleventh International Conference on Data Engineering, Taipei, Taiwan,
IEEE Computer Society Press (1995) 3–14

6. van der Aalst, W., van Dongen, B., Herbst, J., Maruster, L., Schimm, G., Weijters,
A.: Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge
Engineering 47(2) (2003) 237–267

7. Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Work-
flow Logs. In: Sixth International Conference on Extending Database Technology.
(1998) 469–483

8. Cook, J., Wolf, A.: Discovering Models of Software Processes from Event-Based
Data. ACM Transactions on Software Engineering and Methodology 7(3) (1998)
215–249

9. Cook, J., Du, Z., Liu, C., Wolf, A.: Discovering models of behavior for concurrent
workflows. Computers in Industry 53(3) (2004) 297–319

10. Kindler, E., Rubin, V., Schäfer, W.: Incremental Workflow mining based on Doc-
ument Versioning Information. In Li, M., Boehm, B., Osterweil, L.J., eds.: Proc.
of the Software Process Workshop 2005, Beijing, China. Volume 3840 of LNCS.,
Springer (May 2005) 287–301

11. Kindler, E., Rubin, V., Schäfer, W.: Activity mining for discovering software pro-
cess models. In Biel, B., Book, M., Gruhn, V., eds.: Proc. of the Software Engi-
neering 2006 Conference, Leipzig, Germany. Volume P-79 of LNI., Gesellschaft für
Informatik (March 2006) 175–180

12. van der Aalst, W., Rubin, V., van Dongen, B., Kindler, E., Günther, C.: Process
Mining: A Two-Step Approach using Transition Systems and Regions. BPM Center
Report BPM-06-30, BPM Center, BPMcenter.org (Dec 2006)

13. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets
from finite transition systems. IEEE Transactions on Computers 47(8) (1998)
859–882

14. Kindler, E., Rubin, V., Schäfer, W.: Process Mining and Petri Net Synthesis. In
Eder, J., Dustdar, S., eds.: Business Process Management Workshops. Volume 4103
of LNCS., Springer (2006)

Process Mining Framework for Software Processes 181

15. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Petrify:
a tool for manipulating concurrent specifications and synthesis of asynchronous
controllers. IEICE Transactions on Information and Systems E80-D(3) (1997)
315–325

16. van der Aalst, W., Weijters, A., Maruster, L.: Workflow Mining: Discovering Pro-
cess Models from Event Logs. IEEE Transactions on Knowledge and Data Engi-
neering 16(9) (2004) 1128–1142

17. van Dongen, B., van der Aalst, W.: Multi-Phase Process Mining: Building Instance
Graphs. In Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T., eds.: International
Conference on Conceptual Modeling (ER 2004). Volume 3288. (2004) 362–376

18. Weijters, A., van der Aalst, W.: Rediscovering Workflow Models from Event-Based
Data using Little Thumb. Integrated Computer-Aided Engineering 10(2) (2003)
151–162

19. van der Aalst, W., Medeiros, A., Weijters, A.: Genetic Process Mining. In Ciardo,
G., Darondeau, P., eds.: Applications and Theory of Petri Nets 2005. Volume 3536.
(2005) 48–69

20. van der Aalst, W., Reijers, H., Song, M.: Discovering Social Networks from Event
Logs. Computer Supported Cooperative work 14(6) (2005) 549–593

21. Günther, C., van der Aalst, W.: Mining Activity Clusters from Low-level Event
Logs. BETA Working Paper Series, WP 165, Eindhoven University of Technology,
Eindhoven (2006)

22. Rozinat, A., van der Aalst, W.: Conformance Testing: Measuring the Fit and
Appropriateness of Event Logs and Process Models. In Bussler et al., C., ed.:
BPM 2005 Workshops (Workshop on Business Process Intelligence). Volume 3812.
(2006) 163–176

23. van der Aalst, W., Beer, H., Dongen, B.: Process Mining and Verification of
Properties: An Approach based on Temporal Logic. BETA Working Paper Series,
WP 136, Eindhoven University of Technology, Eindhoven (2005)

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 182–194, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Focused Identification of Process Model Changes

Martín Soto and Jürgen Münch

Fraunhofer Institute for Experimental Software Engineering
Fraunhofer-Platz 1

67655 Kaiserslautern, Germany
{soto,muench}@iese.fraunhofer.de

Abstract. Advanced software process management requires capabilities to sys-
tematically analyze differences between versions of a process model. These ca-
pabilities can be used, for instance, to support process compliance management,
to learn from process evolution, or to identify and understand process variations
in different development environments in order to develop generic process
models such as process standards. Analyzing the differences between process
models versions is a highly challenging task that needs to be based on appropri-
ate methods and tools. Experience has shown that, beside global version com-
parisons, local and focused difference analyses are often needed. Example goals
of such focused analyses are the identification of all process changes that are
relevant for a specific role, or the identification of those process changes that
are relevant for a process reassessment. This article presents a technique based
on pattern-matching for such focused analysis. The technique is a component
of the comprehensive DeltaProcess approach for difference analysis [1, 2]. We
explain the underlying concepts of the technique, describe a supporting tool,
and discuss our initial validation in the context of the German V-Modell XT
process standard. We close the paper with related work and directions for future
research.

Keywords: process modeling, process model change, process model evolution,
model comparison.

1 Introduction

Process engineers working on the evolution and maintenance of process models often
have the need to compare different versions of these:

– When a new release of a process standard is published, users of the standard (e.g.,
organizations basing their own processes on the standard) need to know what
changed, in order to adapt their own models.

– When a company-wide process model is modified, employees working according
to that process need to determine if they are affected by the changes.

– When a model that involves safety or mission-critical aspects is updated, reviewers
and auditors can work better and more efficiently if they know exactly what was
modified.

– When simultaneous variants of a model are maintained (e.g., by several projects in
an organization, or by several companies adopting and tailoring a single process

 Focused Identification of Process Model Changes 183

framework), it is useful to be able to synchronize changes between variants, which
requires finding out exactly what was changed in each variant.

– When company-specific standards are originally defined, or when they evolve, it is
necessary to understand the process variability, both over time as well as across the
organization's project space.

One frequently asked question is whether determining where changes occurred and
why is just a matter of proper change control: it could be argued that logging every
change made is all that is needed. In practice, however, this is not as easy as it may
appear. Maintaining change logs is tedious and difficult, and documenting the
changes is often seen as unnecessary overhead to more important tasks, like actually
working on improving the process model. For these reason, change logs are often
missing or poorly maintained and, thus, unreliable as a source of information.

There are many other situations in which mechanisms for reliably determining the
differences between process model versions can be useful. These mechanisms must
be focused, and deliver results that different process stakeholders (process engineers,
project managers, developers, etc.) can use for different purposes. Research-wise,
process difference analysis is faced with many challenges, such as 1) defining appro-
priate notations for specifying difference analysis goals, 2) creating suitable compari-
son algorithms, and 3) designing purpose-and stakeholder-oriented presentations of
the results. The work we are presenting here is part of the DeltaProcess approach to
software process model difference and evolution analysis [1, 2]. This paper concen-
trates on one single aspect of the approach, namely, given a particular user's informa-
tion needs, how to identify precisely those changes that provide the user with the
needed information. The technique presented here for this purpose comprises three
main phases: In the first phase, the models are converted into a representation that
makes it easier to compare them, since it regards all types of changes uniformly. In
the second phase, a so-called comparison model is produced, which comprises the
contents of both compared versions. In the third phase, focused difference analysis
goals are specified, and a pattern-matching system is used to look for corresponding
instances in the comparison model, and produce analysis results.

The rest of the paper is organized as follows: Section 2 describes the process model
comparison problem using an example to illustrate the difficulties involved. Section 3
presents our change identification technique in detail, and includes some examples of
its application to common, practical situations. In Section 4, we briefly discuss our
implementation of this technique, as well as our experience applying it to the German
V-Modell XT [3] process standard. The paper closes with Section 5, which compares
our approach to related work, and Section 6, which presents our final conclusions and
outlook.

2 The Process Model Comparison Problem

To illustrate the difficulties involved in process change identification, Fig. 1 shows
two revisions of a process model excerpt, which we kept deliberately small for the
purposes of the example. If someone were commissioned with the task of finding all
differences manually (i.e., by looking at the diagrams) it would probably take this
person some time to find all of them, and to make sure that none is missing, however

184 M. Soto and J. Münch

Activity:r1
name = “Test Case Design”
description = “This activity is concerned with
 the definition of test cases for...”

Product:r2
name = “Test Case”
description = “Describes the actual conditions
 in which a test operation should...”

Role:r3
name = “Quality Manager”

Role:r5
name = “Quality Technician”

involvesRoleinvolvesRole

produces

isResponsibleFor

Version 1

Version 2

Activity:r1
name = “Test Case Design”
description = “The Test Case Design activity
 is concerned with the definition of test
 cases for...”

Product:r2
name = “Test Data”
description = “Describes the actual conditions
 in which a test operation should...”

Role:r3
name = “Quality Manager”

Role:r4
name = “Tester”

involvesRoleinvolvesRole

produces

isResponsibleFor

Fig. 1. Two versions of a process model (UML object diagram notation)

Activity:r1
name = “Test Case Design”
description = “The Test Case DesignThis
 activity is concerned with the definition of
 test cases for...”

Product:r2
name = “Test DataCase”
description = “Describes the actual conditions
 in which a test operation should...”

Role:r3
name = “Quality Manager”

Role:r5
name = “Quality Technician”

involvesRoleinvolvesRole

produces

isResponsibleFor
Role:r4
name = “Tester”

involvesRole

Fig. 2. A comparison of the process model revisions shown in Fig. 1

small it may be. Considering that real world process models are significantly larger
than our example, it is clear that automated support is necessary to guarantee consis-
tent and reliable comparison results.

Fig. 2 is an attempt to display all changes in the context of the changed model. En-
tities and relations erased from version 1 are marked using interrupted lines, whereas
entities and relations new in version 2 are marked with thicker lines. Changes in entity
attributes are shown by crossing deleted text off, as well as displaying new text in
bold type. The following are some observations about this model comparison:

 Focused Identification of Process Model Changes 185

– Changes are heterogeneous. A number of basic change types can be directly iden-
tified from the example. They include entity additions and deletions, relation addi-
tions and deletions, and changes in the values of the various attributes.

– Attribute changes must be interpreted according to model semantics. Not all
changes belonging to one of the basic types listed above are the same for the user.
For example, if an attribute containing an integer value changes, it is probably
enough to provide the user with the old and new values. On the other hand, if an at-
tribute contains text changes, it is potentially important to determine which words
were modified.

– Relation changes must be interpreted according to model semantics. For example,
if a parent-child relationship changes, it is important to tell the user that a certain
object has a new parent. If a consumes-produces relationship changes, it is impor-
tant to report that some activities now produce new products, or that some products
are now consumed by new activities. How this is reported may even depend on the
role of the user with respect to the process. Oftentimes complete sets of simple
structural changes must be grouped together and presented to the user as a unit for
proper interpretation.

– A graphical display is not enough. Although Fig. 2 does a fairly good job of mak-
ing changes obvious, the same type of display would not work if applied to a
model containing hundreds or even thousands of entities. Even if the technical
difficulties of producing such a large graph were overcome, finding all changes
relevant to a particular task would still be difficult because of the sheer size and
complexity involved.

3 Pattern-Matching Based Change Identification

In the following, we discuss our technique for model change identification. This tech-
nique makes it possible to handle a wide variety of types of changes in a completely
uniform way, to flexibly define the types of changes that are considered interesting or
useful (this can be based on the structure and semantics of the metamodel), and to
restrict the results to only certain types of changes, or even to certain interesting por-
tions of a model.

3.1 A Normalized Representation for Process Models and Their Comparisons

Our first step consists of representing models (and later their differences) in such a
way that a wide range of change types can be described using the same basic formal-
ism. The representation we have chosen is based on that used by RDF [4] and similar
description or metadata notations. For our purposes, this notation has a number of
advantages over other generic notations:

– Being a generic notation for graph-like structures, it is a natural representation for a
wide variety of process model schemata.

– It has a solid, standardized formal foundation.
– As shown below, the uniformity of the notation, which does not differentiate be-

tween relations and attributes, makes it possible to describe a wide range of
changes with a straightforward pattern-matching notation.

186 M. Soto and J. Münch

– Also as shown below, the fact that many model versions can be easily put together
into a single model makes it possible to use the same pattern-matching notation for
single model versions and for comparisons.

Fig. 3 shows the first revision from Fig. 1 converted to this representation. The
graph contains only two types of nodes, which we will call entity nodes (ovals in the
figure) and value nodes (boxes in the figure). Entity nodes have arbitrary identifiers as
labels. Value nodes are labeled by the value they represent, which can belong to a
basic type (string, integer, boolean, etc.)

Fig. 3. A process model in normalized form

Arrows represent typed directed relations (type is given by their labels). Relations
may connect two entity nodes, or may go from an entity node to a value node. It is not
allowed for a relation to leave a value node. It is also not allowed for a node to exist
in isolation. All nodes must be either the start or the end point of at least one relation.
It follows that the graph is characterized completely by the set of the relations (edges)
present in it, since the set of nodes is exactly the set of all nodes that are the start or
the end of an edge.

The correspondence between attributed graphs (like those in Fig. 1) to this normal-
ized form is straightforward:

– Entities and types correspond to entity nodes. For each entity instance and entity
type in the original graph, there is an entity node in the normalized graph. There is
also a type relation between each node representing an entity and the node repre-
senting its type.

– Attributes correspond to entity-value relations. For each entity attribute in the
original graph, there is a relation labeled with the attribute name that connects the
entity with the attribute value (that is, attributes in the original metamodel are con-
verted into relation types). The value is a separate (value) node.

 Focused Identification of Process Model Changes 187

– Entity relations correspond to entity-entity relations. For each relation connecting
two entities in the original graph, a relation connecting their corresponding entity
nodes is present in the normalized graph.1

Fig. 4 shows the same comparison presented in Fig. 2, using the normalized nota-
tion, with changes also highlighted using interrupted and bolder lines. Formally, this
graph respects exactly the same restrictions as the normalized model representation. The
only addition is that edges are decorated to state the fact that they were deleted, added,
or simply not touched. This leads us to the concept of a comparison graph or compari-
son model. The comparison model of two normalized models A and B contains all
edges present in either A or B, or in both, and only those edges. Edges are marked
(decorated) to indicate that the edge is only in A, only in B, or in both of A and B.

Fig. 4. A process model comparison in normalized form

The main aspect to emphasize here is the fact that all changes are actually reduced
to additions and deletions of relations between nodes. This results in part from the fact
that attributes are represented as relations, but also from the fact that nodes cannot
exist in isolation. It is possible (and safe) to identify entity additions and deletions by
looking for additions and deletions of type relations in the model. Also, to be fair, the
comparison in Fig. 4 ignores one important aspect of Fig. 2, namely, the word level
text comparison. We will deal with this limitation later in the paper (see Section 3.4).

1 Relations with attributes can be modeled by introducing entity nodes that represent them, but

the details are beyond the scope of this paper.

188 M. Soto and J. Münch

It is also important to point out, that the comparison model is useful only when enti-
ties have unique identifiers that remain stable after the model is changed. Although, in
theory, this could be considered a strong limitation, it is seldom a problem in practice,
since most practical modeling tools indeed provide unique, stable entity identifiers.

The fact that the normalized representation reduces all changes to sets of relation
additions and deletions permits to describe many types of changes uniformly. The
following sections discuss the mechanism that we have chosen to describe such
changes in a clear and unambiguous way: a graphical pattern-matching language.

3.2 Graphical Comparison Patterns

In order to identify changes of a particular type, a so-called graphical pattern2 must
be defined, that matches precisely these changes. Graphical patterns are essentially
comparison graphs in which some node and/or edge labels have been potentially re-
placed by variables. Informally, matching the pattern to a comparison graph implies
replacing the variables in the pattern with actual labels from the graph, in such a way
that the resulting pattern is a subset of the comparison graph. A value assignment for
the variables in a pattern that results in a match is called an occurrence of the pattern.
Normally, we are interested in the set of all occurrences of a pattern in a particular
comparison graph. The following sections present examples of how to use this pattern
language to identify interesting changes in process models.

3.3 Example 1: Additions and Deletions

Our first example is related to one of the simplest possible model changes: adding or
deleting process entities. Fig. 5 shows four patterns that identify changes of this type
with different levels of generality. The pattern in Fig. 5a) matches all additions of
process activities, and for each match, sets the ?id variable with the identifier of the
new activity. In a similar way, the pattern in Fig. 5b) matches all deletions of process
products. These patterns can be generalized to identify arbitrary additions and deletions:

Fig. 5. Patterns for identifying entity additions and deletions

2 Notice that our use of the word pattern is rooted in the standard pattern matching tradition, as

related to problems like Prolog-style unification, term rewriting and regular expression search.
It is not intended to relate to other uses of the word in computer science, like, for example,
software design patterns.

 Focused Identification of Process Model Changes 189

the pattern in Fig. 5c) identifies all entity additions, and instances an additional variable
with the type of the added entity. Finally, Fig. 5d) shows a pattern that not only finds
new activities, but sets a variable with the corresponding name, a useful feature if the
results of matching the pattern are used, for example, to produce a report.

3.4 Example 2: Changes in Attribute Values

Just as important as identifying entity additions and deletions, is finding entities
whose attributes were changed. Fig. 6 shows three patterns that describe changes in
attribute values. Fig. 6a) is basically an excerpt from the comparison graph in Fig. 4,
which captures the fact that an attribute description was changed. This pattern, how-
ever, matches only the particular change shown in the example. The pattern in
Fig. 6b) is a generalized version of the first one. By using variables for the entity
identifier, as well as for the old and new property values, this pattern matches all
cases where the description attribute of an arbitrary entity was changed. Notice that
each match sets the value of the ?id variable to the identifier of the affected entity,
and the values of ?oldValue and ?newValue to the corresponding old and new values
of the description property. The pattern in Fig. 6c) goes one step further and uses a
variable for the attribute labels as well, which means it matches all attribute value
changes. Notice that these patterns match once for each changed property in each

Fig. 6. Four patterns for identifying attribute value changes

190 M. Soto and J. Münch

object. Finally, the pattern in Fig. 6d) constitutes a specialization of its peer in
Fig. 6c): it is restricted to all attribute value changes affecting process activities.

Changes identified in this way, can be fed to additional algorithms that perform at-
tribute specific comparisons, like, for example, identifying added or deleted individ-
ual words or characters in text based attributes. These way, potentially expensive spe-
cific comparison algorithms are only applied to relevant items.

3.5 Example 3: Impact of Changes on Tool Usage

Our last example stems from a question posed to the authors by a process engineer:
“How can I determine the impact of process changes on the software tool infrastruc-
ture?” The goal of this process engineer was to find out if new software development
tools (or tool licenses) had to be purchased, and, if so, which people had to receive
them after the new process changes were implemented.

Fig. 7 shows two patterns that could help answer this question. These patterns in-
troduce a new language element: an edge marked with a black point (like the edge
from ?toolId to ?toolName in Fig. 7a) matches edges in the comparison graph without
regard to decoration. This means that old, new, and common edges could be matched
by such an edge, as long as the labels of the end nodes and the relation label match.

By using this feature, the pattern in Fig. 7a) is able to match tools having a new re-
quiresTool relation to a tool. This happens regardless of whether the tool itself is new
or existed before, but was not required by the activity. The pattern in Fig. 7b) is a
variation of the previous one, which matches new activities and connects them to the
tools they require. These and similar patterns can be used to determine which users
will eventually require new software tool licenses, in order to buy and install them
timely.

Fig. 7. Identifying the impact of activity changes on tool requirements

 Focused Identification of Process Model Changes 191

4 Implementation and Validation

An implementation of the pattern-matching based change identification technique
presented in the previous sections is available as part of the Evolyzer tool (see Fig. 8),
which is intended to support the DeltaProcess process model difference analysis ap-
proach mentioned in the introduction. We have tested our approach and tools by
applying them to the various official releases of the V-Modell XT [3], a large pre-
scriptive process model intended originally for use in German public institutions, but
finding ever increasing acceptance from the German private sector. As of this writing,
the Evolyzer tool still lacks a graphical editor for change patterns. However, patterns
can be expressed as textual queries using a syntax that basically follows that of the
emerging SPARQL [5] query language for RDF. Expressed as queries, patterns can
be executed to find all their occurrences in a model.

The V-Modell XT constitutes an excellent testbed for our approach and implemen-
tation. Converted to the normalized representation defined in Section 3.1, the latest
public version at the time of this writing (1.2) produces a graph with over 13,000
edges. This makes it a non-trivial case, where tool support is actually necessary to
perform an effective analysis of the differences between versions. Our first trial with

Fig. 8. The Evolyzer tool working on the V-Modell XT

192 M. Soto and J. Münch

the V-Modell XT consisted of analyzing the evolution of the “official” V-Modell XT
itself: we compared the model's available public releases 1.0 (11,555 edges in our
representation), 1.1 (11,822 edges) and 1.2 (13,286 edges). A comparison of versions
1.1 and 1.2, for example, yields 10,628 common edges, which indicates a common
core of almost 80% of the latest version.

Using various patterns, we were able to classify the changes into groups, including
added or removed entities, entities relocated inside the structure, renamed entities,
corrected entity descriptions, etc. This analysis was motivated by the concrete needs
of a company that has deployed a customized version of the VModell XT for use in
all internal software development projects (Example 3 in Section 3.5 is also based on
this work). One of the main purposes of the analysis is to use process model differ-
ence analysis to keep the company's customized model synchronized with the stan-
dard VModell XT.

Even for large cases like those just described, we consider the performance of our
prototype implementation to be satisfactory. Running on a standard desktop PC, the
system is able to convert an instance of the V-Modell XT into the normalized form in
less than 10 seconds. Building the comparison model takes less than five seconds, and
matching patterns is usually faster (of course, this depends on the complexity of the
pattern). Most interesting differences can be analyzed interactively, which makes the
system even more useful. Additionally, the Evolyzer framework makes it possible to
feed changes identified by a pattern to further analysis algorithms. Currently is it pos-
sible to see changes in context using a graph layout system, and to produce text
reports of certain types of differences.

5 Related Work

Several other research efforts are concerned in one way or another with comparing
model variants syntactically and providing an adequate representation for the result-
ing differences.

[6] and [7] deal with the comparison of UML models representing diverse aspects
of software systems. These works are oriented towards supporting software develop-
ment in the context of the Model Driven Architecture. Although their basic compari-
son algorithms are applicable to our work, they are not concerned with providing
analysis or visualization for specific users.

[8] presents an extensive survey of approaches for software merging, many of
which involve comparison of program versions. The surveyed works mainly concen-
trate on automatically merging program variants without introducing inconsistencies,
but not, as in our case, on identifying differences for user analysis.

[9] provides an ontology and a set of basic formal definitions related to the com-
parison of RDF graphs. [10] and [11] describe two systems currently in development
that allow for efficiently storing a potentially large number of versions of an RDF
model by using a compact representation of the raw changes between them. These
works concentrate on space-efficient storage and transmission of change sets, but do
not go into depth regarding how to use them to support higher-level tasks (like
process improvement).

 Focused Identification of Process Model Changes 193

Finally, an extensive base of theoretical work is available from generic graph com-
parison research (see [12]), an area that is concerned with finding isomorphisms (or
correspondences that approach isomorphisms according to some metric) between ar-
bitrary graphs whose nodes and edges cannot be directly matched by name. This
problem is analogous in many ways to the problem that interests us, but applies to a
separate range of practical situations. In our case, we analyze the differences (and, of
course, the similarities) between graphs whose nodes can be reliably matched in a
computationally inexpensive way.

6 Conclusions and Future Work

Due to factors like model size and metamodel differences, the general problem of
identifying and characterizing changes in process models is not trivial. By expressing
models in a normalized representation, we are able to characterize interesting changes
using a graphical pattern matching language. Graphical patterns provide a well-
defined, unambiguous and, arguably, intuitive way to characterize common process
model changes, as our examples show.

Our implementation of pattern queries in the Evolyzer system demonstrates that
our pattern-based change identification technique can be used in practical situations
involving very large process models like the V-Modell XT. It is important to stress,
however, that the technique requires the process entities in compared models to have
stable identifiers that are used consistently across versions. Thanks to the fact that
common modeling tools support stable identifiers, this is often the case when compar-
ing versions of the same model, but not when comparing models that were created
independently from each other.

Acknowledgments. We would like to thank Sonnhild Namingha from Fraunhofer
IESE for proofreading this paper. This work was supported in part by the German
Federal Ministry of Education and Research (V-Bench Project, No. 01| SE 11 A).

References

1. Soto, M., Münch, J.: Process Model Difference Analysis for Supporting Process Evolu-
tion. In: Proceedings of the 13th European Conference in Software Process Improvement,
EuroSPI 2006. Springer LNCS 4257 (2006)

2. Soto, M., Münch, J.: The DeltaProcess Approach for Analyzing Process Differences and
Evolution. Internal report No. 164.06/E, Fraunhofer Institute for Experimental Software
Engineering (IESE) Kaiserslautern, Germany (2006)

3. V-Modell XT. Available from http://www.v-modell.iabg.de/ (last checked 2006-03-31).
4. Manola, F., Miller, E. (eds.): RDF Primer. W3C Recommendation, available from

http://www.w3.org/TR/rdf-primer/ (2004) (last checked 2006-03-22)
5. Prud'hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF. W3C Work-

ing Draft, available from http://www.w3.org/TR/rdf-sparql-query/ (2006) (last checked
2006-10-22)

6. Alanen, M., Porres, I.: Difference and Union of Models. In: Proceedings of the UML Con-
ference, LNCS 2863 Produktlinien. Springer-Verlag (2003) 2-17

194 M. Soto and J. Münch

7. Lin, Y., Zhang, J., Gray, J.: Model Comparison: A Key Challenge for Transformation
Testing and Version Control in Model Driven Software Development. In: OOPSLA
Workshop on Best Practices for Model-Driven Software Development, Vancouver (2004)

8. Mens, T.: A State-of-the-Art Survey on Software Merging. IEEE Transactions on Soft-
ware Engineering, Vol. 28, No. 5, (2002)

9. Berners-Lee, T., Connolly D.: Delta: An Ontology for the Distribution of Differences Be-
tween RDF Graphs. MIT Computer Science and Artificial Intelligence Laboratory (CSAIL).
Online publication http://www.w3.org/DesignIssues/Diff (last checked 2006-03-30)

10. Völkel, M., Enguix, C. F., Ryszard-Kruk, S., Zhdanova, A. V., Stevens, R., Sure, Y.: Sem-
Version - Versioning RDF and Ontologies. Technical Report, University of Karlsruhe.
(2005)

11. Kiryakov, A., Ognyanov, D.: Tracking Changes in RDF(S) Repositories. In: Proceedings
of the Workshop on Knowledge Transformation for the Semantic Web, KTSW 2002.
Lyon, France. (2002)

12. Kobler, J., Schöning, U., Toran, J.: The Graph Isomorphism Problem: Its Structural Com-
plexity. Birkhäuser (1993)

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 195–207, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Approach for Decentralized Process Modeling

Oktay Turetken1 and Onur Demirors2

1 Bilgi Grubu Ltd. ODTU Teknokent, 06531, Ankara, Turkey
{oktay@bg.com.tr}

2 Informatics Institute, Middle East Technical University, 06531, Ankara, Turkey
{demirors@metu.edu.tr}

Abstract. This paper describes a method for organizations to perform process
modeling in a decentralized and concurrent manner. The approach is based on
the idea that modeling organizations’ processes can be performed by individu-
als actually performing the processes. Instead of having a central and devoted
group of people to analyze, understand, model and improve processes, real per-
formers are held responsible to model and improve their own processes concur-
rently. The paper also summarizes the lessons learned by application of the
method in two organizations.

Keywords: Decentralized process modeling, software process modeling, role-
based process modeling, process improvement.

1 Introduction

Many people believe that process models are one of the most valuable assets of or-
ganizations. The value of this asset will increase if they are embraced by the perform-
ers, accurately reflect the executed processes and can be easily updated to reflect the
required changes. A decentralized approach for process modeling can be used to
achieve these multiple goals at once.

In a decentralized approach each agent in the organization models her process. The
totality of the process definitions forms the organization’s process-base. As the degree
of the involvement of the knowledge workers who perform the processes increases,
the likelihood of the model to reflect the executed process as well as the likelihood of
the performers to embrace the models increases.

In addition, in a centralized approach it is generally difficult and not desired to
change processes frequently once their definitions are considered stable [13]. How-
ever, software organizations should be much faster in capturing and incorporating any
improvement opportunity raised in the business into the organization process-base.
This goal could be achieved by a concurrent and decentralized modeling approach.

It can be argued that such an approach can not be easily implemented by large or-
ganizations which perform daily routine tasks. This might be true, yet the literature
indicates that such an approach will be usable for organizations where mostly knowl-
edge workers are integrated and collaborate for production. [5], [23]. Software
engineering organizations are excellent examples.

In this study we defined a method called Plural to provide a disciplined guidance
for organizations to perform modeling in a decentralized and concurrent way.

196 O. Turetken and O. Demirors

The responsibility of understanding, modeling and improving the processes is dele-
gated to individuals that actually perform the processes. Each individual in the or-
ganization models the activities that s/he performs and the results are integrated to
form the complete process models at different abstraction levels. Based on the result-
ing processes, diagrams such as the ones depicting process and role dependencies can
be generated in order to provide insight into the way the organization works and can
be improved.

This paper provides an overview of the Plural method and summarizes the results
of its application in two exploratory cases. In Section 2, we briefly discuss the related
research. In Section 3, we provide an overview of the method. Findings and lessons
learned from case studies are discussed in Section 4.

2 Related Work

Process modeling and enactment approaches usually assume central specification and
execution of processes. The implicit assumption on such a central structure is also
present in many process redesign/improvement approaches [3], [28]. On the other
hand, various studies on process modeling ([20], [14], [1]) acknowledge the impor-
tance of the involvement of the performers and even urge the empowerment of actors
in order to take the responsibility to model and change their processes.

The idea of agents modeling their activities in a decentralized manner is proposed
by Demirors as the “Horizontal Change Approach (HOC-A)” [4] to manage change in
software development organizations. In HOC-A, process modeling and change are
performed in a decentralized manner concurrently by all the members of the organiza-
tion. In this sense, it is analogous to neural networks in which the overall goal is
achieved collectively without direction at any specific organizational level.

For decentralized modeling, Ben-Shaul and Kaiser [2] adopt the view of ‘interna-
tional alliance’ whereby independent countries sign ‘treaties’ that determine their
collaboration but retain full control over their local laws. They developed the Oz envi-
ronment as an enhancement to the Marvel system [12]. In general, participants of the
‘treaty’ explicitly specify in what ways they are willing to participate in a multi-site
operation. Leonhardt et al. [15] proposes a framework for distributed and concurrent
software engineering as an alternative to traditional centralized software development.
They considered the use of decentralized process models to drive consistency check-
ing and conflict resolution. Individual process models are represented locally by asso-
ciating development participants with them. The process models use pattern matching
on individual’s development histories to determine the particular state of the devel-
opment process, and utilize rules to trigger situation dependent assistance to the user.
Graw et al. [8] proposes architecture for distributed process modeling and enactment
based on FUNSOFT nets [9].

Role-based process modeling approaches considers an organization as a network of
roles, communicating through interactions. The Riva method proposed by Ould [19]
suggests a number of steps to be followed for process modeling using Role Activity
Diagrams (RADs). The approach focuses on the interaction between roles which ease
the modeling of concurrent engineering processes. The Interconnected Roles (IR)

 An Approach for Decentralized Process Modeling 197

framework [25] is a process description formalism based on roles, teams and
processes for specifying and building distributed n-party synchronous interactions in
organizations. Object-Oriented Role Analysis Method (OORAM) is an object-
oriented methodology based model which uses roles to describe patterns of interacting
objects [21]. A role has attributes and it may receive/send messages or invocations
from/to other roles. The proposed methods and notations require a considerable de-
gree of refinement and extension to be used for process modeling where role behav-
iors are created and maintained individually and independently.

Acquiring portions of the processes and merging them to form the complete model
is also central in ‘ViewPoints’ [6], [17] or view-based approaches employed in re-
quirements engineering and process elicitation research areas [22]. ‘Each viewpoint
encapsulates partial knowledge about a system and its domain - expressed in a suit-
able representation scheme - together with partial knowledge about the overall proc-
ess of development’ [17]. The framework is based on the idea that, the construction of
a complex description or model involves many agents who have different perspectives
or views of the artifact or system they are trying to describe [7]. However, views are
outdated once they are merged into a complete model and are generally not main-
tained as separate entities from then on. Any change in the process is represented in
the integrated model. Verlage [27] is one of the first that introduced a formalization of
core requirements of view based process elicitation. Turgeon and Madhavji [26] have
proposed a prototype tool called V-Elicit that helps to elicit process models from mul-
tiple sources or views. Works by Verlage and Turgeon & Madhavji are in parallel in
many points. However, these works still lack support for a process modeling approach
where models are developed by real performers.

In the last decade, agent-based approaches in artificial intelligence and business
process management fields have received great interest for engineering complex dis-
tributed systems. Increasingly, many computer systems are being viewed in terms of
autonomous agents. Proposed solutions have already been developed for many differ-
ent domains and software engineering [11] and business process management (BPM)
[10] are no exceptions. In agent-based approaches an agent is an autonomous, prob-
lem solving computer program that interacts with other agents when it has interde-
pendencies [11]. The focus of these approaches is on the enactment of the agents’
service definitions, which are presumed to be defined already. Thus, to meet the
requirements posed by decentralization in modeling, these approaches need to be ex-
tended with a mechanism, a graphical notation and a tool for human agents to define
the set of services they provide and their dependencies to others.

3 The Plural Method

Plural is a method to define and improve an origination’s processes and to maintain
its process-base. The organization goes through three phases of the process in order to
establish its process-base and necessary infrastructure. Fig. 1 presents these three
phases and the way each can proceed.

198 O. Turetken and O. Demirors

Fig. 1. The Phases of the Plural Process

In context definition phase, all process owners collectively define the aim and
scope of the modeling process. Based on the roles each agent plays in the organiza-
tion, agents start defining the activities they perform in the processes in the descrip-
tion and conflict resolution phase. They identify and resolve inconsistencies and
conflicts between their definitions and others. This role based definition is considered
complete after they are validated by associated peer agents and verified by the coordi-
nation team. In integration and change phase, complete and consistent models are
merged; new models are generated and analyzed. Change requests are proposed.
Based on its type, a request triggers the first or second phase and the cycle repeats it-
self for number of times for any request until the change is incorporated and the
processes reach to their next consistent and complete state.

3.1 Context Definition

This phase sets up the organization for concurrent and decentralized process model-
ing. The primary goal is to achieve a structural frame of the organization in terms of a
high level process network, participating roles and agents and their structural relation-
ships. First, the process group, consisting the process owners and relevant stake-
holders, determines and states the aim and objectives for modeling processes. The
group, then, establishes the coordination team, which performs number of activities
including monitoring and facilitating the definition process, guiding agents in model-
ing and maintaining the process network, verifying individual role process models,
integrating and generating models for process analysis.

The group determines the processes that will be modeled and the roles that partici-
pate in those processes. The coordinators depict the coverage on a ‘scope diagram’
which defines the span of the entire study. Fig. 2 provides an example diagram
epicting a number of processes and participating roles.

In identifying and associating the roles with processes, the inherent static relation-
ship between these roles are revealed. For example, configuration manager role has
(inherits) all of the responsibilities of the project team member, which is a more gen-
eral role. The coordinators depict these relationships on a role diagram.

 An Approach for Decentralized Process Modeling 199

Review Team
Leader

Review Team
MemberReview

Project/Team
Leader

Provide
Training

Recorder

Training
Coordinator

Trainer

Manage
Configuration

Configuration
Manager

Project Team
Member

Manage
Change

Change
Manager

Change
Request

Originator
Author

Quality
RepresentativeManager

Manage
Project

Project
Team

Author

* extension point: Change required to a baselined product

extends *

includes

includesincludes

includes

includes

Fig. 2. A scope diagram. Include relationship represents a reusable process that is uncondition-
ally incorporated into the execution of the other.

Attendee
(Training)

Operations
Team Leader

Trainer

Training
Coordinator

Configuration
Manager

Change
Manager

Quality
Representative

Project Team
Member

Review Team
Member

Customer

Project/Team
Leader

Author Change Request
Originator

Manager

Recorder

Review Team
Leader

Project
Team

Review Team

generalizesgeneralizes

generalizes

generalizes
generalizes

generalizes

comprises

comprises

Fig. 3. Role Diagram. Similar to the class concept in Unified Modeling Language (UML) [18],
relationships were in association, aggregation (composition) or generalization type.

Fig. 3 gives an example role diagram for the case given in the sample scope
diagram (Fig. 2). The roles that were external to the organization (e.g. customer) or
out of the scope with respect to the processes covered are called inactive roles. Active

200 O. Turetken and O. Demirors

roles, on the other hand, are the ones whose activities are modeled by an associated
agent. Each active role had its own individual role-process models describing the
activities it performs in the context of a specific process.

Each agent takes over the (active) roles with respect to their actual responsibilities
in the organization. In addition for the development agents to be responsible from
process description, peer agents that validate these definitions are also associated with
roles. Agents can be assigned to multiple roles and roles can be taken over by multi-
ple agents. The coordination team ensures that no active role is left unassigned. With
respect to the scope and related assignments, the execution plan is documented and
approved by all participants. The plan and the diagrams provide a framework for all
participants about the responsibilities and the scope of the individual process model-
ing activity to be performed in the next phase.

3.2 Description and Conflict Resolution

Once the execution plan is approved, based on the schedule, the process description
and conflict resolution phase may commence. The primary goal is to come up with a
complete and consistent set of individual role-process models. Modeling at this stage
carries role-based modeling to a further step where the real players of those roles
model their processes concurrently. If deemed necessary, the coordination team per-
forms orientation sessions to agents for the procedure to be followed, the notation, the
tool and the techniques to be used, before modeling initiates.

First, each development agent determines the operations (the services that role pro-
vides) for each role for the processes they participate. Then, for each operation, they
develop a description with an individual role-process diagram. Fig. 4 gives an exam-
ple of an individual role process diagram.

The notation for describing the processes, is primarily based on eEPC (extended
Event Driven Process Chain) [24] diagrams. eEPC diagrams are semi-formal and
widely accepted in business process modeling practice. The main constructs are func-
tions and events. An event can trigger a function or a function can produce an event
so event and function combinations produce event-process chains. Data and organiza-
tion view of business processes are also represented in eEPCs.

The diagram depicts the activities the role performs in that operation, the informa-
tion items it requires while performing these activities and the outputs it produces. In
additions to that, development agents were asked to represent the sources of the inputs
and the destination of the outputs, if any, to and from its role’s activities. The sources
might represent other roles or items such as project repositories, folders, software
tools and etc. Such representation of the interaction formed the expectations of that
role from other roles. These diagrams are consistent in terms of role’s expectations if,
in the models of the other roles, they answer to these expectations by modeling the
expected interface. For example, for the case given in Fig. 4, change manager expects
to receive a change request form (1. section filled) from the change originator to start
its activities. That is, it requires that information item to service that operation. This
expectation is considered to be satisfied, if the change originator role, in any of its op-
eration model declares that it delivers this item to the change manager. Otherwise
there is an inconsistency between the expectations of these two roles in terms of their
interface.

 An Approach for Decentralized Process Modeling 201

Interacts Carries outR
oles

A
ctivities

CRF
(1.section

filled)

CRF
(2.section

filled)

CRF
(1.section

filled)

Change
Request

Originator

Fill in the 2nd.
Section of the
CRF and send

to Author

Review CR

CR does NOT
need any further

investigation

CR needs
further

investigation

Author

CR rejected

CR sent to
related Author
to perform the

change

Initiate an
investigation

for the CR

Team
decition is to

cancel CR

Team decition
is to implement

CR

Investigation
Request for

CRCR
Investigation

Result

Review
investigation

results and actions
to be taken

A change
request

for a product
is received

Change
Manager

CRF
(1.section

filled)
Project
Team

CR: Change Request
CRF: Change Request Form

Fig. 4. Individual role-process diagram (a columnar eEPC diagram) for ‘evaluate change re-
quest’ operation of ‘change manager’ role in change management process

During process description, development agents identify inconsistencies between
definitions based on the expectations of other roles. Consistency checking with
respect to the expectations also requires considering aggregation and inheritance rela-
tionship between roles as well as the information items. Agents analyze the expecta-
tions and possible inconsistencies at anytime during process description. In case of an
inconsistency, an agent either changes its description in order to match other’s

202 O. Turetken and O. Demirors

expectations or insists on her position and communicated with other agents in order to
solve the problem. Resolution is under agents’ responsibility. Once inconsistencies
and conflicts are resolved, the definitions are validated by peers and verified by the
coordination team and the phase ends.

The primary output of this phase is a set of verified and validated individual role-
process diagrams. Consistency should be established within (intra-consistency) and
among (inter-consistency [17]) role-process models. However, besides these concrete
outputs, individual process modeling by each agent in the organization is itself an im-
portant and a rewarding artifact of this phase. It enlightens agents about, the roles they
are playing; the activities they are performing; the information they are producing and
consuming; and their interaction with other roles. Successful completion of this stage
implies that, many of the implicit assumptions and conflicts related with above items
are uncovered, shared and solved and a common understanding of activities and arti-
fact among agents is established.

3.3 Integration and Change

Verified and validated models implicitly or explicitly convey a great extent of knowl-
edge, such as; what processes is carried out; which roles participates in these
processes and what they perform; what information a role needs; when it needs this
information as well as how it acquires it. Therefore, integration and model generation
was a matter of querying and questioning the right answers to this process-base.

The first type of diagram that can be generated is the one that integrates individual
role-process diagrams into a model that depicts all the activities performed in that
process at the lowest level of detail. Fig. 5 depicts a diagram for the change manage-
ment process. In essence, the integration for the activity-level process diagrams is per-
formed by drawing related individual diagrams side by side and joining them with the
messages the roles sent to each other and the activities they perform together.

Higher level process diagrams such as the ones depicting the role operations and
message transfers can also be generated. Other types of diagrams such as processes
with higher abstraction levels, their process dependencies as well as role dependen-
cies can also be depicted. Model integration and generation is performed to obtain the
macro view of the processes performed by the organization. Role dependency dia-
grams helped the organization to understand the interactions and interdependencies
existing between roles and the implications of changing these relationships as well as
to identify and compare alternative executions.

Changes to the scope including the changes on role definitions are discussed and
approved by the process group including all members and reflected on the models by
the coordination team. Changes related to individual role definitions, on the other
hand, are directly performed by the related agent that are playing that role and
reviewed by its peer agent.

The organization at this phase achieves a process-base that comprises diagrams
representing the structural frame, individual role-process diagrams that are maintained
by agents, and variety of generated models that visualize the way the organization
works from different perspectives. Diagrams help agents to acquire the ability to un-
derstand the way processes execute, pinpoint problems and inefficiencies, identify
improvement opportunities, and recommend changes and improvements.

 An Approach for Decentralized Process Modeling 203

Interacts Carries out Carries out Carries out Carries outR
oles

A
ctivities

Change
Request

Originator
AuthorChange

Manager

Investigation
request for a
CR received

Investigation
result declared
to the Change

Mng.

Process Asset
Library (PAL)

Change required
to a baselined

product

CR Initiated

Investigation
Request for

CR

CRF
(1.section

filled)

Project
Repository

Configuration
Manager

CRF
Template

(SUP03-FR1)

CRF
(1.section

filled)

Prepare a CRF
and send to the

Change
Manager

CRF
(1.section

filled)

CRF
(2.section

filled)

Fill in the 2nd.
Section of the
CRF and send

to Author

Review CR

CR does NOT
need any
further

investigation

CR needs
further

investigation
CR rejected

CR sent to
related Author
to perform the

change

Initiate an
investigation

for the CR

Team
decition is to

cancel CR

Team decition
is to implement

CR

Review
investigation

results and actions
to be taken

A change
request

for a product
is received

Decide on the
action to be
taken and

declare result

Analyze the
impact of the

CR

CR
Investigation

Result

Updated CRF
sent

Product
(updated
wrt. CRF)

Product (to
be updated
wrt. CRF)

Fill 3rd. section
of the CRF and
send to Change

Mng.

Review the CR

Perform
change wrt.

CRF

Product
prepared and

ready for
review

Review
Completed CRF

(2.section
filled)

CRF
(3.section

filled)

A change
request for a

product
received

Initiate
Review

Complete
Review

Fill in the 4th.
section of the

CRF

CRF
(4.section

filled)

Finalized
(Performed) CRF
sent to be placed
under conf.cont.

Notify
Originator

about the CR

Originator
notified about

the CR

CRF with 3rd
section filled

received

CRF
(2.&4.sections

filled)

Send Finalized
CRF to be

placed under
conf.cont. CRF

(4.section
filled)

CRF
(4.section

filled)

CRF
(1.section

filled)
Fill in the 2nd.
& 4th. sections

of the CRF
CRF

(2.&4.sections
filled)

CRF
(2.&4.sections

filled)

Send Finalized
CRF to be

placed under
conf.cont.

Finalized
(Rejected) CRF

sent to be placed
under conf.cont.Notification

arrived for the
CR

CR process
completed

CR rejected

CR accepted
and handled

Receive results
for CR and
assess the

decision/change

Project
Team

CR: Change Request
CRF: Change Request Form

Fig. 5. An integrated activity-level process diagram for change management process

4 Case Studies and Lessons Learned

In order to evolve and observe the applicability of the method, two exploratory case
studies were conducted. First study was performed in a department of a university and
covered administrative processes such as student admissions, staff recruitments, etc.
The second case was performed in a small software development and consultancy
company and included a number of software engineering processes. The study group
involved six participants in the first and four in the second case study. Almost all

204 O. Turetken and O. Demirors

agents were familiar with process modeling and related concepts in both studies. Yet,
except the coordinators they were not directly acquainted with the notation and the
toolset they utilized. The software organization already had procedures and guidelines
for process execution written in natural language, which eased both the initiation and
execution of the study. The participants, in the second case were also given a ques-
tionnaire to provide feedback on the approach followed and interviewed to elicit
benefits and difficulties observed.

The tool used in these studies was the ARIS Collaborative Suite [24], which
mainly supports ARIS (Architecture of Integrated Information Systems) methodology
for enterprise modeling. The tool was extended with an add-on that analyzes process
repository to detect and present inconsistencies between individual process models.

Table 1 summarizes the effort utilized for the studies. With the limited support of
the tool, the integration took considerable amount of time for both studies, which can
be significantly reduced as it can be mostly automated.

Table 1. The extent and effort utilized for the studies

 Case Study 1 Case Study 2
of high level processes 12 5
of roles 30 (13 active) 18 (15 active)
of distinct role operations NA 48
of development agents 6 4
Effort: person-hour person-hour
 Context Definition: 18 10
 Definition and Conflict Resolution: 76 19
 Agent1: 9.0 9.0
 Agent2: 5.0 5.0
 Agent3: 20.0 2.5
 Agent4: 13.0 2.5
 Agent5: 11.5 -
 Agent6: 17.0 -
 Integration: 20 5
Total 114 34

Case studies revealed number of advantages as well as limitations and key success
factors. During process description and inconsistency resolution, agents identified the
problems mostly related with incompleteness and ambiguities in procedures as well as
implicit assumptions they hold during executions. That tacit knowledge enabled them
to handle any ambiguity or fill any gap between the execution and the definition.
They also reflected on how they should actually perform their responsibilities and
started adapting their processes with respect to other’s situations and expectations.

For several processes, agents realized that their execution was no longer adhering
to the definition. For certain reasons, individuals changed the way they perform the
processes but the definition stayed as it is. Moreover, the role that is responsible to
perform the change was not always clearly stated. Changes to the process definitions
and related artifacts were managed via the change management process and generally
performed by a specific agent. However, the current state of the process, as agents
noted in interviews, put a degree of bureaucracy on implementing the change itself,

 An Approach for Decentralized Process Modeling 205

which led to hesitations for initiating the change process when a necessity for change
or an improvement opportunity is identified. Instead, individuals simply started alter-
ing their execution and began departing from the definition. For example, the review
record that some of the agents were using incorporated more information than the
standard form in their process assets library. So, this improvement chance was hin-
dered or postponed.

The responsibilities are inherently lucid in Plural. Individual definitions are altered
by related agents any time a change is necessitated. If a change did not affect role’s
interface, then it is a simple alteration in role’s context. For example, configuration
manager’s alteration in the operation of ‘placing under configuration control’ did not
affect the way other roles perform their processes, since the change does not have an
impact on other role’s expectations, but only affected the way the configuration man-
ager performs its activities and produce its artifacts. However, if an update modifies
its interface with the neighbor roles, then that change is incorporated in related mod-
els or it is revoked after a negotiation between parties. Such changes and their impacts
are triggers that ruin consistency, and related agents should resolve them and reach to
another consistent state again. The approach gave agents the responsibility to reflect
any change they consider necessary not only on the way they perform their tasks but
also on the artifacts they own. Being the supplier of these artifacts, they were respon-
sible to maintain them and communicate any change with the customers of these arti-
facts. This might also involve negotiations with them on the content and structure.

According to the questionnaire and interviews with the participants, agents adapted
to the method more rapidly than expected. They found it useful; to isolate their roles
and responsibilities clearly from others and maintain them separately. All agents
strongly agreed that modeling gave them a better understanding of the processes they
perform and explicit modeling of their interface between other roles provided useful
and important information about the process otherwise would have been omitted. Par-
ticularly for process guidance, role-based modeling was very useful since it clearly
represented the responsibilities and the interface for each role.

In addition, role-based modeling by agents eased each individual to define role-
based metrics and integrate the information into their process definitions. In the sec-
ond case, agents were able to define when and by which means the metrics will be
collected and stored so that they could also track their individual performance. Cap-
turing each role’s objectives for processes is important in understanding why the
process operates as it does. This may help organization to assess process goals and the
goals of its participants and help them to understand process’ complexity before alter-
ing key relationships during the process change [14], [29].

5 Conclusion

As a limitation of the approach, the studies showed that the expected benefits are not
fully realized if the processes being defined and are not performed or not effectively
established in the organization. Another issue is related with the pattern of the organi-
zation that utilizes Plural. The software company that we performed our second case
can be considered to have a relatively higher maturity in terms of its operational envi-
ronment, its process stability as well as the way it considers process improvement. We

206 O. Turetken and O. Demirors

believe that, this eased the way the approach is adapted by the organization, since it
fostered agent’s motivation and commitment on to the study. Besides managerial and
organizational issues, the diagrams utilized for the approach have some cognitive
limitations. Additional information can be represented with the sacrifice in the ease of
perception. For some of the processes, the process diagrams (such as student admis-
sions, project management) were too large to fit into a regular sheet of paper which
increased its complexity. Another limitation was related with the tool used. The team
could not find a tool that would provide full support for the approach and that was a
motive for an add-on developed onto a commercial software. However, the add-on
had its own limitations and the real benefits would be gained with a tool answering
the unique requirements of the approach.

We should also note that the case was performed with a limited number of partici-
pants and scope. Therefore, we have currently no data if the approach will scale-up to
be used for large knowledge-based organizations with hundreds of knowledge work-
ers and spanning a larger extent of processes across the organization.

Overall we can conclude that the study provided initial evidence of the approach’s
value and showed how an organization might exploit its strengths. The method
helped participants to clearly define their expectations and goals and negotiate with
other agents to achieve them. It provided an environment and a mechanism to define
agent’s expectations, unveil and discuss problems and establish a common jargon be-
tween participants while letting them to represent and keep theirs. All these hands on
experiences, in turn, facilitated communication and knowledge sharing between par-
ticipants. In addition, the total time for process definition and conflict resolution be-
came the time committed by a single agent that performed its portion the longest. In
other words we had process improvement cycles measured in days.

Acknowledgments. This study is supported in part by the Ministry of National
Defence, Undersecretariat for Defence Industries (Republic of Turkey), KAMA-
C4ISRMOS project.

References

1. Armour, Philip G.: The Laws of Software Process: A New Model for the Production and
Management of Software. Auerbach Publications (2004)

2. Ben-Shaul, Israel Z. & Kaiser, G.E. A paradigm for decentralized process modeling and its
realization in the Oz environment. In Proceedings of 16th International Conference on
Software Engineering. Sorrento, Italia. (1994) 179–190

3. Davenport, Thomas H.: The New Industrial Engineering: Information Technology and
Business Process Redesign , Sloan Management Review, 31:4 (1990) 11-27

4. Demirörs, O.: A Horizontal Reflective Process Modeling Approach for Managing Change
in Software Development Organizations. Ph.D. Thesis. School of Engineering and Applied
Science, Southern Methodist University (1995)

5. Drucker, P.F.: The New Society of Organizations. Harvard Business Review, (1992)
95-104

6. Finkelstein, A.; J. Kramer; B. Nuseibeh; L. Finkelstein; M. Goedicke: Viewpoints: A
Framework for Integrating Multiple Perspectives in System Development. Int. J. of Soft-
ware Eng. and Knowledge Eng. Vol. 2, No. 1, World Scientific Pub. Co. (1992) 31-58.

 An Approach for Decentralized Process Modeling 207

7. Finkelstein, A.; I. Sommerville: The Viewpoints FAQ. SWE Journal, Vol. 11 (1996) 2-4
8. Graw, G. & Gruhn, V. Distributed Modeling and Distributed Enaction of Business Proc-

esses. Proc. of the 5th European SWE Conference (ESEC) (1995) 8-27
9. Gruhn V. Communication support in a process-centered software engineering environ-

ment. ISPW (1994) 37-41
10. Jennings, N.R.; T. J. Norman; P. Faratin; P. O’Brien; B. Odgers: “Autonomous agents for

Business Process Management” International Journal of Applied AI 14(2) (2000) 145-189
11. Jennings, N.R.; M. Wooldridge: “Agent-Oriented Software Engineering”. Proceedings of

the 9th European Workshop on Modelling Autonomous Agents in a Multi-Agent World:
Multi-Agent System Engineering (2000)

12. Kaiser, G. E. Rule-based modelling of the software development process. Proceedings of
the 4th international software process workshop on Representing and enacting the software
process. Devon, United Kingdom. (1988) 84 - 86

13. Kasse, T.: Practical insight into CMMI. Artech House (2004)
14. Katzenstein, G.; F. J. Lerch: Beneath the Surface of Organizational Processes: A Social

Representation Framework for Business Process Redesign. ACM Transactions on Infor-
mation Systems, Vol. 18, No. 4 (2000) 383-422

15. Leonhardt, U., Kramer, J., Nuseibeh, B. & Finkelstein, A. Decentralised Process Enact-
ment in a Multi-Perspective Development Environment. Proc. of the 17th Int. Conference
on Software engineering. Seattle, Washington, USA. (1995) 255-264

16. Mullery, G.: CORE - a method for controlled requirements expression. Proc. of ICSE-4,
IEEE Computer Society Press (1979) 126-135

17. Nuseibeh, B.: A Multi-Perspective framework for Method Integration. PhD Thesis, De-
partment of Computing, Imperial College, London (1994)

18. OMG, UML: Superstructure, Ver.2.0, Formal/05-07-04, Object Management Group
(2005)

19. Ould, M.A.: Designing a re-engineering proof process architecture. Business Process Man-
agement Journal, Vol. 3 No. 3, MCB University Press (1997) 232-247

20. Ould, M.A.: Preconditions for putting processes back in the hands of their actors. Informa-
tion and Software Technology, Vol. 45 Elsevier B.V. (2003) 1071-1074

21. Reenskaug, T.; P. Wold; and O.A. Lehne: Working with Objects: the OOram Software
Engineering Method. Manning Publications (1996)

22. Sommerville, I., Kotonya, G., Viller, S. & Sawyer, P. Process Viewpoints. Proceedings of the
4th European Workshop on Software Process Technology. Springer-Verlag. (1995) 2 - 8

23. Senge, P.: It's the Learning: The Real Lesson of the Quality Movement. Journal for Qual-
ity & Participation, Nov/Dec99, Vol. 22, Issue 6. (1999)

24. Scheer, W.A.: ARIS- Business Process Frameworks. 3rd Ed., Springer-Verlag Berlin
(1999)

25. Singh, B.: Interconnected Roles (IR): A Coordination Model. Technical Report CT-084-
92, Microelectronics and Computer Technology Corporation, Austin, Texas USA (1992)

26. Turgeon, J.: A View-Based System for Eliciting Software Process Models. Ph.D. thesis,
McGill University, September (1999)

27. Verlage, M., "Multi-View Modeling of Software Processes", In Proceedings of EWSPT3,
pp. 123-127, Springer-Verlag, Grenoble, France (1994)

28. West, M.: Real Process Improvement Using the CMMI. Auerbach Publications (2004)
29. Yu, E.; J. Mylopoulos: Understanding “Why” in Software Process Modelling, Analysis,

and Design. Proc. of the ICSE-16, Sorrento, Italy (1994) 159-168

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 208–220, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Survey of Software Development with Open Source
Components in Chinese Software Industry

Weibing Chen1, Jingyue Li2, Jianqiang Ma1, Reidar Conradi2, Junzhong Ji1,
and Chunnian Liu1

1 Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology,
College of Computer Science and Technology,

Beijing University of Technology (BJUT), Beijing 100022, China
{weibingchen,jianqiang.ma}@gmail.com

2 Department of Computer and Information Science,
Norwegian University of Science and Technology (NTNU),

NO-7491 Trondheim, Norway
{jingyue,conradi}@idi.ntnu.no

Abstract. Chinese software companies are increasingly using Open Source
Software (OSS) components in system development. Integrating such
components into new software systems leads to challenges related to
component selection, component integration and testing, licensing compliance,
and system maintenance. Although these issues have been investigated
industrially in other countries, few state-of-the-practice studies have so far been
performed in China and with a representative subset of software companies. It
is therefore difficult for Chinese software companies to be aware of special
issues, or to plan improvement of OSS-related processes. This paper describes a
questionnaire-based survey in Chinese software companies of software
development with existing OSS components. Data from 47 finished
development projects in 43 companies have been collected. The results show
that use of web search engines was the most common method to locate OSS
components. Local expertise combined with requirements compliance was the
most decisive factors when choosing an identified component. To avoid legal
exposure, the common strategy was to use components without licensing
constraints. About 84% of the components needed bug fixing or other code
changes, rarely relies on support from the OSS community. However, close
participation with the OSS community was rare, although most developers
meant that this was important.

Keywords: CBSE (component-based software development), OSS component,
Empirical study.

1 Introduction

Building new software systems by pre-fabricated components is an attractive way to
achieve lower cost, shorter time-to-market, higher quality, adherence to industrial
standards etc. [11]. It has recently become more and more popular to reuse Open

 A Survey of Software Development with Open Source Components 209

Source Software (OSS) components in system development [2, 5, 16, 18]. Such
components offer many advantages, such as free and changeable code. Indeed, many
OSS components are recognized for their high reliability, performance, and
robustness [17]. On the other hand, reusing OSS component (and “external”
component in general) raises challenges in selecting the right component and to
successfully integrate and test the selected component [12]. In addition, it is important
to select and integrate OSS component with proper license, if the developed system is
going to be distributed or sold to the general market [2, 17].

Many previous studies of OSS-based development are based on theoretical
proposals (especially around component selection) [2, 6] and industrial case studies
[5, 16]. One major survey has been performed to investigate the state-of-the-practice
of OSS-based development in three European countries [11]. Although China has
become a major actor to employ OSS software in industry, especially regarding
software platforms like Linux, little research has been performed on the challenges of
efficient reuse of OSS components in Chinese software industry.

Our questionnaire-based survey focuses on three main issues in reusing OSS
components for software development in Chinese software industry, namely
component selection, licensing terms, and system maintenance. We have used
membership lists from a national Chinese software organization (CSO for short)1 to
achieve an almost representative subset of software companies. We have gathered
information from 47 finished projects in 43 companies. The results show that use of
web search engines was the most common method to locate OSS components. Local
expertise combined with requirements compliance was the most decisive factors in
deciding upon an identified component. To avoid legal exposure, the common
strategy was to use components without licensing constraints or to package
proprietary code separately. About 84% of the components needed bug fixing or other
code changes, rarely relies on support from the OSS community. In addition, close
participation with the OSS community in so-called OSS projects was rare on most
issues, although most developers meant that this was important.

The rest of this paper is organized as follows: Section 2 describes the background.
Section 3 discusses the research approach. Section 4 presents results and discussion of
research questions, Section 5 contains a general discussion, and a conclusion and
ideas for future work are presented in section 6.

2 Background

2.1 Concepts Used in This Study

In this study, we define a software component as in [10]:“Software components are
executable units of independent production, acquisition, and deployment that can be
composed into a functioning system.” An OSS component is defined as a software
component that: a) Is provided by the OSS community; b) Is subject to licensing
constraints; c) Is not a platform software (e.g., OS like Linux, DBMS, or similar
software).

1 The name of this organization was omitted for confidential reasons.

210 W. Chen et al.

2.2 State-of-the-Art

There have been two main kinds of empirical studies of OSS:

• Cultural-oriented studies concentrate on how to make new OSS software’s and
components, the OSS project itself and its organization as an OSS community, the
participators’ motivation, and the evolution of the OSS project [14].

• Technical-oriented studies like this one, concentrates on process issues in reusing
existing OSS components to develop new software [13, 17].

The aim of this study is therefore to establish some empirical-based guidelines to
make OSS-based development to run more smoothly. Typically, such a development
process includes several stages, such as OSS component selection, component
integration, and system maintenance.

2.2.1 OSS Component Selection
Selecting a right component is one key factor for the success of OSS-based
development. Typically, the component selection process includes locating candidate
components, evaluating components based on pre-defined criteria, and deciding upon
components [12, 15]. Most previous studies on component selection focus on
selecting COTS (commercial-off-the-shelf) components [1, 15]. Due to the peculiar
nature of OSS components, the process and criteria to select OSS components are
quite different with those used to select COTS components [6]. The proposed COTS
component selection process may not fit OSS selection very well [6].

2.2.2 OSS Component Integration and OSS Licensing Issues
After OSS components are selected, the next step is to integrate them into the target
system. To ensure the success of integrating the OSS components, the integrators
need to consider not only technical issues, such as API and programming language,
but also the licensing terms of the selected OSS components. There are more than 50
different OSS licenses [9]. Some licenses have strict constraints on the distribution or
resale of the derived system from OSS components. For example, the GPL (GNU
Public License)-type licenses do not give the licensee unlimited redistribution rights.
The right to redistribute is granted only if the distribution is licensed under the terms
of the GPL and includes, or unconditionally offers to include at the moment of
distribution, the source code [12, 17].

2.2.3 System Maintenance
After OSS components are integrated into a software system, it is important to
maintain and update those components properly for a long term use. Most technical
supports from OSS communities are in the form of mailing lists and bulletin boards
[12]. Since these supports are provided mainly by loosely organized volunteers, it is
difficult to control the support quality. To get high quality and long-term support, one
proposed strategy is to establish a long-term working relationship with the OSS
community [16]. That is, the OSS component users not only download software from
the community, but also upload the modified software to the OSS community [13, 16].
Such a relationship between users and the OSS community is supposed to benefit both
practitioners [2].

 A Survey of Software Development with Open Source Components 211

2.3 State-of-the-Practice of OSS-Based Development in China

China is one of the major countries using OSS in information systems. The Chinese
government has played an important role in the process of promoting the Chinese
OSS movement. For example, The Japan-China-Korea (JCK) open alliance which
announced in November 2003 is an initiative to promote OSS by cooperation [8]. Due
to the Chinese government’s encouragement on the use of Linux and OSS, more and
more Chinese software companies start to use OSS components to develop software.
No other country comes even close to the level of advancement that China has
achieved in deploying OSS, particularly Linux [8]. The current scale of OSS-based
development is large enough to be noticed at the global level. However, there are few
empirical studies on OSS-based development in Chinese software industry.

3 Research Approach

3.1 Research Questions

This study is to investigate the state-of-the-practice of OSS-based development in
Chinese software industry. We designed three research questions RQ1 to RQ3 and
corresponding sub-questions.

The number of OSS components has increased dramatically these years. More than
137,000 OSS projects have been registered at sourceforge.net. Facing so many OSS
components, it is difficult to select the best one to be integrated into a new system.
Although researchers have proposed several structured, formal, semi-formal selection
processes, and various evaluation criteria, there are few empirical studies have
observed the actual selection process used by commercial developers [12]. Thus, our
research question RQ1 and corresponding sub-questions RQ1.1 and RQ1.2 are:

RQ1: How the OSS components were selected in practice?
• RQ1.1. what methods were used to locate candidate OSS components?
• RQ1.2. what evaluation criteria were used to evaluate OSS components?

Many studies claimed that the OSS licensing terms affect the using of OSS
components. Although Ruffin [17] discussed major legal aspects of using OSS and
related risks mitigation strategy, few studies have illustrated how the licensing issues
are managed in practice. So the second research question RQ2 and corresponding
sub-questions RQ2.1 to RQ2.4 are:

RQ2: How did OSS license affect the OSS component selection and
integration?

• RQ2.1. How well did developers understand OSS license?
• RQ2.2. Did developers read related OSS licensing terms?
• RQ2.3. Did developers encounter OSS license related troubles?
• RQ2.4. what strategies were used to avoid the possible OSS licensing troubles?

To get long-term technical support of the integrated OSS components, establishing
a long-term relationship by engaging in the related OSS community has been
proposed as a solution [7, 16]. However, this proposal lacks support from industry
practices. Thus, our research question RQ3 is:

212 W. Chen et al.

RQ3: Did the engagement in the OSS community facilitate the maintenance of
the integrated OSS components?

3.2 Research Design

To answer the research questions, we have used a survey to collect data. First, a
preliminary questionnaire with both open-ended and close-ended questions was
designed by reading literature. Second, a pre-study was performed to validate the
quality of questions in the preliminary questionnaire and to get answers of the open-
ended questions. Based on the results of the pre-study, all open-ended questions in the
preliminary questionnaires were redesigned into close-ended questions. In addition,
the problematic questions in the preliminary questionnaire were revised. Then, the
revised questionnaire was used to collect data in a main study.

3.2.1 The Preliminary Questionnaire
The preliminary questionnaire has 5 sections. Sections 1 and 5 contain questions to
collect background information of projects and the respondents. Sections 2, 3, and 4
include questions to investigate our research questions.

3.2.2 The Pre-study to Verify and Refine the Preliminary Questionnaire
The pre-study included two steps, i.e., individual interviews followed by a group
discussion.

Step 1 – Individual interviews. We have interviewed 5 project managers from 5
different companies. All interviewees have solid experience with OSS-based
development. Each interview was conducted by two authors of this paper. One was
responsible for conducting the interview, and the other recorded answers and asked
for clarification if needed. The interviews were also taped for later verification.

Step 2 – A group discussion. After the individual interviews, we revised the open-
ended questions in the preliminary questionnaire to close-ended questions and made a
second version of the preliminary questionnaire. We then organized a workshop with
more than 30 industrial experts to verify and comment on the second version of the
questionnaire. Based on comments from the workshop, we revised the questionnaire
into a final version. The final questionnaire includes about 35 questions and takes
about half one hour to be filled out.

3.2.3 The Main Study to Collect Data
In the main study, the data was collected by the cooperating with the CSO. In total,
we got 47 questionnaires from 43 companies (4 companies filled in 2 questionnaires
each). The sample selection and data collection process are as follows:

1. Assemble the target population. We randomly selected 2,000 companies from a
database of CSO, which included about 6,000 companies.

2. Send invitation letters by email to obtain possible participants. We sent
invitation letters by email to the 2,000 selected companies. The invitation letter
introduces the survey. We specified that survey participants will be rewarded
with either the final report of the survey or an annual membership of the CSO
worth of 500 Chinese Yuan. We got about 200 company responses from this step
and these companies were used as the original contact list.

 A Survey of Software Development with Open Source Components 213

3. Send questionnaires by email to possible participants. We sent questionnaires
(as word files) by email to the 200 companies and asked them to select one
completed software development project, which used one or more OSS
components, to fill in the questionnaire. Since we cannot get the complete list of
relevant projects in such a company, project selection within the company was
decided by the respondents themselves. Therefore the sample selection process
was a random selection of companies, followed by a convenience sample of
relevant projects within companies.

4. Collect filled-in questionnaires with follow up. From the 200 companies, we
first got 40 questionnaires back. To ensure the quality of the data, we excluded 10
questionnaires answered by programmers whose work experiences were less than
three years. For the remaining 30 questionnaires, we contacted the respondents
again by telephone to clarify possible misunderstanding and to fill in the missing
data. At the same time, we contacted the remaining of 160 companies by
telephone to persuade them to fill in the questionnaire. By doing this, we got 17
other questionnaires back.

4 Results and Discussion of Research Questions

In this section, we first present background information of the interviewees,
participating companies, and projects. We then show the results for each research
question followed by detailed discussion.

4.1 Background Information

Human respondents. Most respondents have a solid IT background. Five of them are
IT managers, 13 are project mangers, 14 are software architects and 7 are senior
software developers. Most of them have more than five years of software development
and more than two years working experiences with OSS-based development.

Participating companies. According to number of employees, the participating
companies include 7 small, 19 medium, 9 large, and 8 super large companies, as
shown in Fig. 1. Comparing with the official number of employees in Chinese
software companies [22], as shown in Fig.1, it shows that most of the participating
companies are medium and large companies.

The distribution of companies

16.3%

44.2%

20.9% 18.6%

26.0%

6.5%
0.5%

67.0%

0%

10%

20%

30%

40%

50%

60%

70%

80%

small (<=50) medium (51-300) large (301-1000) super (>1000)

The participating companies All Chinese software companies

Fig. 1. The distribution of participating companies

214 W. Chen et al.

Participating projects. Forty-six respondents filled in the actual-used effort of
projects. Thirteen out of 46 projects used efforts less than 10 person-months, 18 used
efforts between 10 and 100 person-months, and the remaining 15 projects used more
than 100 person-months.

4.2 Investigating RQ1: How OSS Components Were Selected

Results of RQ1.1. To answer RQ1.1, we listed possible activities of locating OSS
components from our pre-study and literature [15] as following: a) Have used it
(them) before; b) From colleagues of same company; c) From friends of other
companies; d) Through reading related magazines (e.g., Programmer magazine); e)
Through visiting trade shows and exhibitions; f) Using search engines (e.g., Google,
Yahoo); g) Visiting OSS project portals (e.g., sourceforge.net, freshmeat.com). The
respondents were asked to answer whether they have performed such activities to
locate OSS components or not. The results reveal that locating OSS components was
mostly based either on search engines (e.g., Google or the search feature in
Sourceforge) or internal experience (e.g., having used the components before,
reading magazines, getting advice from internal colleagues). External information
channel, such as getting advices from friends in other companies, was rarely used.

Discussion of RQ1.1. Previous studies have discussed the practices of selecting OSS
components. In [12], the authors concluded that most companies use a manual (brute
force) method, e.g., searching with Google or Sourceforge. Our data support that
conclusion. However, our results show that developers used Google more frequent
than Sourceforge. The authors of [12] also proposed that familiarity was the main
attribute to be considered when selecting OSS components. Our results support this.
As indicated in [13], companies were willing to listen to experience from other
companies and were also willing to share their own experience with others. However,
our results show that experience sharing between people in different organizations
was not popular. The possible reason is that there is a lack of channels to share
experience of using OSS components between different organizations.

Results of RQ1.2. To answer this question, we formulated possible criteria to be
considered when evaluating OSS components from [3, 12] as following: a)
Requirements compliance; b) Architecture compliance; c) Quality of components
(security, reliability, usability etc.); d) Functionality; e) OSS licensing terms; f) Price;
g) Reputation of components or supplier; h) Quality of documentation; i) Expected
support from the OSS community (updating, bug fixing etc.); j) Environment to be
used in (platform, hardware etc.).Respondents were asked to answer “don’t agree at
all”, “very low”, “low”, “medium”, “high”, and “very high”, or “don’t know”. We
assigned an ordinal number from 1 to 5 to the above alternatives (5 meaning very
high). The results illustrate that requirements compliance (i.e., with median value 4)
is the most important criteria to be considered. On the other hand, price and support
are the least important criteria to be considered (i.e., with median value 3). The
importance of other criteria, such as component quality and reputation, architecture
compliance, OSS licensing terms are between.

Discussion of RQ1.2. Our results confirm that one of most important criteria to be
considered when evaluating OSS component is still requirement compliance, rather

 A Survey of Software Development with Open Source Components 215

than architecture compliance proposed by [12]. The authors of [10] proposed that
components with more and better comments in the community or marketplace bulletin
had a good chance to be selected, because they were assumed to be better tested with
generally good qualities. Our data can give that conclusion further support. Although
previous studies claimed that technical support was very important to ensure the
success of OSS-based systems [5, 20], our data show that the possible support from
the OSS community was not considered as very important during component
evaluation.

4.3 Investigating RQ2: How the Licensing Terms Were Complied

Results of RQ2.1-RQ2.3. Questions related to RQ2.1 to RQ2.3 and corresponding
answers are in Table 1. RQ2.1 and RQ2.3 were used the same measurement as
RQ1.2. With respect to RQ2.2, respondents were asked to answer “don’t agree at
all”, “hardly agree”, “agree somewhat”, “mostly agree”, “strongly agree”, or “do not
know”. We assign an ordinal number from 1 to 5 (5 meaning strongly agree) to these
alternatives.

Table 1. Results of RQ2.1-RQ2.3

RQs Questions in the questionnaire Results

RQ2.1 What was the extent of your
understanding of OSS license?

The results show that most respondents did
not understand OSS licenses very well.

RQ2.2 Have you read all licensing
terms of the OSS component
that you are using?

The results show that respondents have
only partly read OSS licensing terms.

RQ2.3 Have you encountered OSS
license related troubles?

21% of the respondents never
encountered OSS license related troubles.
The remaining respondents rarely
encountered license related troubles.

Since the respondents’ understanding and correct use of OSS licenses may be
affected by their emphasis on licensing issues in the selection phase, we wonder
whether the more the developers considered licensing terms in the selection phase, the
better they understood the licensing terms. To investigate this question, we calculated
the correlations between the respondents’ emphasis of license criteria in the selection
phase and answers of the above three questions with a Spearman rank correlations in
SPSS 11.0.

Discussion of RQ2.1-RQ2.3. Results show that there are no significant correlations
between the respondents’ emphasis on licensing terms in selection phase and their
knowledge and effort used to read these licensing terms. Surprisingly, the more
developers emphasized the OSS licensing terms, the more frequently they
encountered license related troubles. The possible explanation is that people did not
understand licensing terms and did not take proper action to avoid possible troubles,
even though they considered licensing terms as an important issue.

216 W. Chen et al.

Results of RQ2.4. RQ2.4 deal with what actions have been used to avoid possible
license related troubles. From the literature [2, 12, 16, 17], we have summarized
possible strategies as following: a) Use other components without licensing
constraints; b) Consult legal experts for help; c) Develop modules containing GPL-
based components and with APIs exposing them, in order to avoid GPL restrictions;
d) Package the proprietary code separately to avoid GPL restriction; e) Contact the
OSS license’s “owner” and agree on a certain license to avoid the licensing impacts;
f) Place all the “derived programs” which relate to licensing issues, back to the OSS
community.

We use the same measures as RQ2.2. The result shows that using other OSS
components without license constraints was the most popularly used strategy. On the
other hand, putting all “derived programs” back to OSS community was the least used
strategy. The frequency of using the other strategies, such as packaging open source
code with proprietary code separately and contact OSS license’s “owner”, was
between.

Discussion of RQ2.4. From the OSS component users’ perspective, the main concern
on OSS licensing term is whether the system reusing OSS components is defined as a
“derived programs” [2]. If so, according to many OSS licenses, the “derived work”
should be published. The source code of project is a private property for business
companies which hide the intellectual property (IP) from their competitors and make
profits on IP investment [12]. When using OSS components, our results show that
business companies would rather use components without strong licensing constraints
to avoid making their code public.

4.4 Investigating RQ3: How the Maintenance Was Performed

Results of RQ3. This research question investigates how to maintain OSS-based
systems smoothly. We first investigated whether developers needed to fix bugs and to
change the source code. If the answer was ‘Yes’, the follow up questions were what
they did. Results show that 44.7% of respondents needed bug fixing and 39.3% of the
developers needed to change code. When they did the fixing or changing, our results
show that more respondents prefer to do it themselves rather than to ask for help from
the OSS community. However, respondents needed more effort (40 person-hours) on
average to correct errors by themselves than by the OSS community (11 person-
hours). On the other hand, respondents need less effort on average to change the code
themselves (35.2 person-hours) than by the OSS community (60 person-hours).

To answer RQ3, we also investigated the relationship between project developers
and the OSS community. We asked respondents whether there were developers (i.e.,
those in their projects) that have taken part in the OSS community. Only 4
respondents said ‘Yes’. For the respondents with “No” answers, they were asked to
select one from the following three reasons with the same measures as in RQ2.2. a)
There was no need to take part in the community; b) Do not have enough resources
(such as time, human resources, etc.); c) It was difficult to take part due to the
hierarchy of the OSS community. Results illustrate that developers thought it was
needed to take part in the OSS community. Due to resource limitation, such as time
and cost, most of them did not join in the OSS community. However, joining in the
OSS projects was not regarded as a difficult.

 A Survey of Software Development with Open Source Components 217

Discussion of RQ3. Although taking part in a corresponding community and
contributing to the OSS projects and getting contributions published may not be
straightforward, it proved to be helpful [13]. Our results show that most developers
thought that taking part in OSS community was needed. However, there was a lack of
resource to do that. Fortunately, there are many other ways to work with the OSS
community. Perhaps the simplest way is to provide feedback and to report bugs to
OSS projects [7, 13]. In addition, new features and possible implementation of the
features can be proposed to OSS projects [13, 20].

5 General Discussion

This study summarized the practices of three key issues of OSS-based development in
Chinese software industry, namely selecting OSS components, complying OSS
licensing terms, and maintaining OSS components. Based on our results, we give
three suggestions on facilitating the OSS-based development.

Improve the OSS search engine to facilitate experience sharing
Although several methods can be used to locate OSS components, our findings in
RQ1 show that two methods had been used most popularly, i.e., web search engines
(e.g., Google) and OSS project portals (e.g., Sourceforge.net). The same findings have
been reported in [12]. The advantage of using web search engines is that they are
simple and fast. However, the disadvantage is that the search results are imprecise and
possible huge. The advantage of using OSS project portals is that the OSS projects are
centralized and classified. On the other hand, one OSS project portal can not include
all OSS projects. People have to search in several portals to get all possible
component candidates. The new ‘Google Code Search’ helps to solve the above
shortcomings by combing portals of the open-source domain.

When selecting and evaluating the OSS components, experience of previous use of
OSS components is valuable. Our results of RQ1 show that, however, experience
sharing was limited to internal colleagues. To facilitate experience sharing between
different companies, it would have been better for ‘Google Code Search’ to include
and structure the users’ experience and comments of using components, i.e., creating
an OSS community for relevant components.

Understand and comply with OSS licensing terms properly
Another important issue of reusing OSS component is OSS licensing terms [12]. It is
important for companies to carefully read, understand, and comply with the license of
an OSS component. Our results of RQ2.1 and RQ2.2 show that most developers did
not read and understand OSS licensing terms properly. Although there are many OSS
licenses in use (more than 50 approved by opensource.org) and the licensing terms
varies, five common licenses (i.e., GPL, LGPL, BSD, AL, and MIT) [20, 21], which
are simple to comply with, cover 90% of OSS projects [20]. It is may be wise for OSS
users to learn and understand these most common licenses before they start to select
and integrate OSS components.

Take a more active part in the OSS community
When considering maintenance of the OSS-based system, project developers may
need to fix bugs of OSS components, to add or revise the components’ functionalities.

218 W. Chen et al.

Our results of RQ3 show that developers needed more effort on debugging, than what
the OSS community did. A better way might be to report bugs on bulletin boards and
then letting the OSS community fix them. To change the OSS component code, our
results of RQ3 show that asking the community the changes needed more effort than
doing the changes locally. The possible reason is that OSS community needs a long
time to accept suggested changes.

As indicated in previous studies, one of the solutions to the maintenance of
OSS-based system is to take part in OSS community [7, 16]. Some previous data
show that 83% of community participants live in the Western countries and 55% of
them contribute to OSS projects during working hours [14]. In contrast, our results
from Chinese software industry show that only 9% of the investigated projects had
dedicated developers take part in the OSS community. Thus, one of the primary tasks
of the Chinese OSS movement is to mingle with the OSS community [19].

Possible threats to validity
a) Construct validity. In this study, most variables and alternatives are taken

directly, or with little modification from existing literature. We did a pre-study to
ensure the quality of questionnaire, and nearly 15% of the questions and alternatives
in the final questionnaire were revised based on the pre-study.

b) Internal validity. We promised respondents in this study a final report or the
annual membership of the CSO which worth of 500 Chinese Yuan. Most respondents
took part in this survey as volunteers and selected the report as the reward. We
therefore think that the respondents answered the questionnaire truthfully. However,
our unit of study was a finished project. So a possible threat is that the respondents
have failing memory on past projects.

c) External validity. There were more than 11,550 software companies registered
in China in 2005 [22]. The CSO database contained only less than a half of them.
Although we have put much effort on collecting data, we only got data from 43
companies out of our initial contact list of 2000 companies. For the remaining
companies, we do not know their reasons for not participating. The respondents
answered the questionnaires based on finished projects which were selected based on
convenience by respondents. All the above issues may bring external threats to the
conclusion of this study.

6 Conclusions and Future Work

More and more software companies are reusing OSS components in their software
development projects, in China and elsewhere. Such companies need empirically-based
guidelines for OSS-based development. The main conclusions of our survey are:

• Selection of OSS components is mainly based on existing web search engines,
followed by local expertise for evaluation, e.g., requirements compliance and
assumed component quality. The new Google code search engine
(http://labs.google.com) illustrates the need for improved search support.

• OSS licensing terms are not a barrier to software companies, when reusing
OSS components in system development.

 A Survey of Software Development with Open Source Components 219

• System maintenance leads in 84% of the development projects to bug fixing or
other code changes in the selected OSS components, and involves the OSS
community on a case-to-case basis. We recommend that the experience and
knowledge around relevant OSS components is handled by an internal
“component uncle”, and by a more active participation with the OSS
community. The latter is also expressed by the developers themselves, but not
followed up - perhaps for cultural and organizational reasons?

• Finally, since China has no comprehensive, national database of software
companies, it is difficult to select a random sample of participants in such
surveys, even if the present one is maybe as good as we can get.

In Europe 2005, over 50% of the software companies report that they are using
OSS components in own software development [4]. We do not know a similar figure
for China, but have a feeling that it is lower. We therefore need further studies of the
extent, challenges, problems and cost/benefits of OSS-based software development in
China and elsewhere. We also need to study in what ways the use of OSS affect the
software projects.

References

1. Briand, L. C.: COTS Evaluation and Selection. Proc. of International Conference on
Software Maintenance, Bethesda, Maryland (1998) 222-223.

2. Brown, A. W., and Booch, G.: Reusing Open-Source Software and Practices: The Impact
of Open-Source on Commercial Vendors. Proc. of the 7th International Conference on
Software Reuse (ICSR-7). Austin, TX, USA, April 15-19, 2002, Springer Verlag LNCS,
Vol. 2319, 123-136.

3. Dagdeviren, H., Juric, R., and Kassana, T. A.: An Exploratory Study for Effective COTS
and OSS Product Marketing. Proc. of the 27th International Conference on Information
Technology Interfaces, Cavtat, Croatia (2005) 644-649.

4. Evans Data Corporation, “Open Source/Linux Development Survey”, 2006, http://
www.evansdata.com/survey_linux_topical.shtml.

5. Fitzgerald, B., and Kenny, T.: Developing an Information Systems Infrastructure with
Open Source Software. IEEE Software, January-February (2004), 21(1):50-55.

6. Giacomo, P. D.: COTS and Open Source Components: Are They Really Different on the
Battlefield? Proc. of the 4th International Conference on COTS-Based Software Systems.
Bilbao, Spain, February 2005, Springer Verlag, LNCS, Vol. 3412, 301-310.

7. Holck, J., Larsen, M. H., and Pedersen, M. K.: Managerial and Technical Barriers to the
Adoption of Open Source Software. Proc. of the 4th International Conference on COTS-
Based Software Systems. Bilbao, Spain, February, 2005, Springer Verlag, LNCS, Vol.
3412, 289-300.

8. Kshetri, N.: Structural Shifts in the Chinese Software Industry. IEEE Software, July-
August (2005), 22(4):86-93.

9. Open Source Initiative, 2005, available at http://www.opensource.org/index.php.
10. Li, J., Bjørnson, F. O., Conradi, R., and Kampenes, V. B.: An Empirical Study of COTS

Component Selection Processes in Norwegian IT companies. Proc. of the Int'l Workshop
on Models and Processes for the Evaluation of COTS Components (MPEC'04 Arranged in
co-location with ICSE'04), Edinburgh, Scotland. May 2004, 27-30.

220 W. Chen et al.

11. Li, J., Conradi, R., Slyngstad, O. P. N., et al.: An Empirical Study on Off-the-Shelf
Component Usage in Industrial Projects. Proc. of the 6th Intl. Conf. on Product Focused
Software Process Improvement, Oulu, Finland, Jun. 2005, Springer Verlag, LNCS Vol.
3547, 54-68.

12. Mandanmohan, T. M., and Rahul De’: Open Source Reuse in Commercial Firms. IEEE
Software, November-December (2004), 21(6):62-69.

13. Merilinna, J., and Matinlassi, M.: State of the Art and Practice of Open Source Component
Integration. Proc. of the 32nd EUROMICRO Conference on Software Engineering and
Advanced Applications, Cavtat/Dubrovnik, Croatia (2006) 170-177.

14. Lakhani, K. and Wolf, R. G.: Why Hackers Do What They Do: Understanding Motivation
and Effort in Free/Open Source Software Projects, In: Feller, J., B. Fitzgerald, S. Hissam,
K. Lakhani (eds.), Perspectives on Free and Open Source Software, MIT Press,
Cambridge. (2005) 3-22.

15. Ncube, C., and Maiden, N.: Selecting COTS Anti-Virus Software for an International
Bank: Some Lessons Learned! Proc. of the 26th International Conference on Software
Engineering MPEC 2004, Edinburgh, Scotland, UK. (2004) 17-21.

16. Norris, J. S.: Mission-Critical Development with Open Source Software. IEEE Software,
January-February (2004), 21(1):42-49.

17. Ruffin, M., and Ebert, C.: Using Open Source Software in Product Development: A
Primer. IEEE Software, January-February (2004), 21(1):82-86.

18. Spinellis, D., and Szyperski, C.: How is Open Source Affecting Software Development?
IEEE Software, January-February (2004), 21(1): 28-33.

19. Wang, G., and Zhang, X.: Chinese Linux Open Source Encounters Close. IT Time
Weekly, Volume 22, (2004) 20-21.

20. Tuma, D.: Open Source Software: Opportunities and Challenges. Journal of Defence
Software Engineering, January (2005) 6-10.

21. Ueda, M.: Licenses of Open Source Software and Their Economic Values. Proc. of the
2005 Symposium on Applications and the Internet Workshops (SAINT-W’05), January
(2005) 381-383.

22. Ministry of Information of the PRC & Chinese Software Industry Association: Annual
Report of China Software Industry, (2006):

 http://www.soft6.com/news/detail.asp? id=15759.

Empirical Study on Benchmarking Software

Development Tasks

Li Ruan1,2, Yongji Wang1, Qing Wang1, Mingshu Li1, Yun Yang1,3,
Lizi Xie1,2, Dapeng Liu1,2, Haitao Zeng1,2, Shen Zhang1,2,

Junchao Xiao1,2, Lei Zhang1,2, M.Wasif Nisar1,2, and Jian Dai1,2

1 Institute of Software, Chinese Academy of Sciences, Beijing 100080, China
2 Graduate University, Chinese Academy of Sciences, Beijing 100039, China
{ruanli,ywang,wq,mingshu,xielizi,liudapeng,zenghaitao,zhangshen,

xiaojunchao,zhanglei,wasif,daijian}@itechs.iscas.ac.cn
3 Center for Information Technology Research,
Swinburne University of Technology, Australia

yyang@ict.swin.edu.au

Abstract. Benchmarking is one of the most important methods to learn
the best practices for software process improvement. However, in current
software process context, benchmarking is mainly for projects rather
than software development tasks. Can we benchmark software develop-
ment tasks? If so, how to? Moreover, benchmarking software development
tasks has to deal with multivariate and variable return to scale (VRS).
This paper reports practical experience of benchmarking software devel-
opment tasks under multivariate and VRS constraints using Data Envel-
opment Analysis (DEA). The analysis of experience data in Institute of
Software, Chinese Academy of Sciences (ISCAS) indicates that the ideas
and techniques of benchmarking software projects can be deployed at the
software development task level. Moreover, results also show that DEA
VRS model allows the developers to gain new insight about how to iden-
tify the relatively efficient tasks as the task performance benchmark and
how to establish different reference sets for each relatively inefficient task
under multivariate and VRS constraints. We thus recommend DEA VRS
model be used as the default technique for appropriately benchmarking
software development tasks. Our results are beneficial to software pro-
cess improvement. To the best of our knowledge, we believe that it is
the first time to report such comprehensive and repeatable results of
benchmarking software development tasks using DEA.

Keywords: Benchmarking, software process improvement, performance,
software development tasks, projects, data envelopment analysis.

1 Introduction

Benchmarking software projects is vital for any organization seeking to con-
tinuously improve its project management practices and identify competitive
strengths and weaknesses [1]. Benchmarking in this context means to measure

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 221–232, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

222 L. Ruan et al.

project performance against some established performance baselines [1]. On the
other hand, recently, due to the rapid development of CMMI/TSP/PSP [2][3],
the trend of software process improvement is “scaled down” to the level of indi-
vidual developers [3].

Benchmarking software development tasks is vital for any developer seeking
to continuously improve his task management practices and identify competitive
strengths and weaknesses. In practice of project management, task is a basic unit
of project and a fine-grained and detailed work breakdown for developers in a
project. The need to benchmark software development tasks is clear [4]. How-
ever, in the current software process context, benchmarking is mainly for projects
[1][4][5][6][7] rather than tasks. Moreover, benchmarking software development
tasks is difficult to achieve, due to the multivariate and variable returns to scale
(VRS, i.e., the relationship between the input and output of tasks is non-linear)
[1] properties. Firstly, the program size, effort, defects, etc., are the most com-
mon input and output of tasks. The evaluation of task performance thus has to
deals with multivariates. Secondly, as reported in [1], the relationship between
size and effort is nonlinear. And as reported in [8], the relationship between
size and defects is also nonlinear. The software development tasks thus exhibit
VRS. In other words, to achieve the goal of total software process improvement
(especially, PSP improvement), it is vital for organizations and developers to an-
swer the question “Can we deploy the idea of benchmarking software projects for
benchmarking software development tasks which exhibit multivariates and VRS
properties? If so, how to?”.

Furthermore, to correctly benchmark software development tasks, there are
at least two key requirements and two corresponding hypothesises for us (e.g.
developers) to verify.

• Req1: We need to establish a task performance benchmark under multi-
variate and VRS constraints. Only after the performance benchmark has been
established, can developers determine which task to learn the best practices from.
i.e., we must first identify the relatively efficient software development tasks.

Hypothesis 1: The relatively efficient tasks can be identified to establish
the task performance benchmark under multivariate and VRS constraints.

• Req2: We need to establish different reference sets for each relatively
inefficient task under multivariate and VRS constraints. Surely developers can
roughly treat all the identified relatively efficient tasks derived from Req1 as a
whole as the performance benchmark. However, in practical application, each
identified relatively efficient task usually is of different improvement value for
the inefficient one. Therefore, we must establish different reference sets for each
relatively inefficient task.

Hypothesis 2: Different reference sets for each relatively inefficient task
can be established under multivariate and VRS constraints.

Yet, to date, the project management literature has proposed few tools for en-
abling comparisons of tasks which explicitly consider the multivariate and VRS

Empirical Study on Benchmarking Software Development Tasks 223

properties of tasks. Commonly applied project performance evaluation meth-
ods, such as earned value management (EVM) [9], provide organizations with a
method of systematically comparing actual performance to project/task goals.
It does not take into account of the task uniqueness when performing cross-
task evaluation. Statistical methods propose to compare the task performance
with some theoretical optimal ones (e.g. theoretical baselines). However, as [1]
recently reports, in software engineering, it seems more sensible to compare the
performance with the best practice rather than with some theoretical optimal
(and probably nonattaintable) performance. Furthermore, multivariate regres-
sion is unsuitable for identifying the best tasks because it tends to evaluate tasks
relative to the average rather than relative to the best. Moreover, software tasks
data are heteroscedastic. We could therefore wrongly tend to identify mainly
the large tasks as the most productive without taking into account of the VRS
properties of tasks.

Data Envelopment Analysis (DEA) developed by A. Charnes and W. W.
Cooper in 1978 is a linear non-parametric programming-based performance eval-
uation technology. It provides a powerful approach for handling the paradigm
of task uniqueness [5], multivariate and VRS [1]. [1] especially points out that
“DEA is the only method complying with the two requirements (the multivari-
ate inputs/outputs and VRS) that we consider crucial to perform correct per-
formance assessment in software engineering.” Moreover, DEA is appealing to
software practitioners because it uses the best practice frontier as a benchmark
rather than some theoretical baseline [1]. To date, DEA is gaining increasing
interests in benchmarking research of the software process field [1][5]. But to the
best of our knowledge, few research results have been reported publicly on bench-
marking software development tasks which will be more beneficial to software
developers than benchmarking software projects at the organization level.

In this paper, we propose a DEA-based software development tasks bench-
marking method. Practical experiences on benchmarking software development
tasks under multivariate and VRS constraints using DEA in ISCAS (Institute
of Software, Chinese Academy of Sciences) are reported.

This paper is organized as follows. Section 2 describes the task data collection
process and the data analysis tool of our study. Section 3 presents the details of
the data analysis process and the empirical results. Section 4 shows the sensi-
tivity analysis process. Section 5 summarizes our conclusions and points out the
future work.

2 Data Collection and Analysis Tool

2.1 Data Collection

The organization (ISCAS) which we collect data from is one of the leading research
and development organizations in China and has high software process capability
maturity level (CMMI level 4). The work of the developers in ISCAS is entirely
task-based and performed under strict quantitative CMMI/TSP/PSP-based pro-
cesses management. In addition, the organizationhas developed a software process

224 L. Ruan et al.

management tool called SoftPM [10] to help software organizations and developers
to record and collect the task, project and process data automatically. Moreover,
the organization imposes strict task planning/reporting/auditing and defect re-
porting/tracing/fixing procedures with the aids of the tool. Thus, the data quality
and relative completeness of the task/defect reports provided by the developers
can be sufficiently guaranteed.

Firstly, we identify the input/output metrics of tasks by mining the task and
defect reports. We extract task reports that at least satisfy the following rules:

1. The metrics can be automatically derived from developers’task and defect
reports so as to fulfill the desire of comprehensive quantitative software pro-
cess improvement.

2. The work products (e.g. Programs and Reports) are reported at the task
level so as to enable the fine-grained performance evaluation.

3. Based on CMMI/TSP/PSP specification, tasks in ISCAS are divided into
seven types, namely, Engineering, SPI, Management, QA, Review, Test and
Self-Defined. Only tasks whose task type is Engineering are included in this
study because most tasks of this type are software development tasks.

4. The output metrics must be related to the inputs so as to make reasonable
and fair comparisons of the efficiency of the tasks.

We primarily use the above rules, the expert knowledge and the specification
of task and defect reports to determine which input/output metrics to include in
the model. The best subset regression analysis was also used to assist the expert
in the selection process. We finally derive three outputs and one input (Table 1)
for benchmarking software development tasks.

Secondly, we establish the task benchmarking data set by mining the task
and defect report data and referring to the established evaluation metrics of
tasks (Table 1). The established task data set consists of 30 completed software
development tasks (Table 2). All the tasks are the engineering type, implement
the same software process management package and all based on J2EE Web
Applications, i.e. the task data set can be regarded as homogenous.

Thirdly, we transform the evaluation metrics which are undesirable inputs or
outputs in DEA terminology. One metric which requires transforming in the es-
tablished evaluation metrics (Table 1) is: Program Defects. Because an increase
in an input should contribute to increased output and increasing the Program
Defects is an undesirable output. There are several different methods for mod-
eling undesirable outputs in DEA. The method used for this case study was

Table 1. Input and output evaluation metrics of tasks

Metric Type Meaning Unit

Effort Input Actual effort of the task Person Hour
Program Size Output Program size of the work product of the task LOC
Program Defects Output Program defects found in test phase Defects
Documents Output Documents specified for the task Pages

Empirical Study on Benchmarking Software Development Tasks 225

Table 2. ISCAS Task evaluation data set

- Size: Program Size
- Defects: Program Defects

Task Size Defects Documents Effort Task Size Defects Documents Effort

1 1579 12 6 7.5 16 620 3 7.5 6.5
2 1320 10 5 7 17 598 5 3 6.4
3 1202 8 7 7.5 18 568 3 5 5.5
4 1000 5 5 7 19 460 5 3 6.5
5 980 9 2 6.5 20 458 4 2.5 6
6 940 7 4 6 21 345 5 4 5.3
7 824 6 5 6.5 22 263 3 5 5.1
8 763 7 5 5 23 236 5 3 3
9 744 5 5.5 6 24 233 4 3 3.5
10 735 6 4 7 25 220 2 4 3
11 725 5 5.5 5.5 26 200 4 2.5 4
12 718 6 6 6 27 178 3 1 3
13 700 4 3 5.4 28 155 2 1.5 2
14 685 9 5 5 29 144 2 1 1.5
15 678 7 6.5 5.5 30 124 3 3 2

the [TRβ] [11] transformation, a common practice in the DEA literature. In the
[TRβ] transformation, the undesirable output (μi) is subtracted from a signif-
icantly large scalar (βi), such that all resulting (transformed) values (fk

i) are
positive and increasing values are desirable. The βi chosen is generally a value
just slightly larger than the maximum value of the undesirable output observed
in the data set, since choosing a βi value that is much greater than this maxi-
mum value can distort model results. In this application, the maximum Program
Defects was 12 defects (see Table 2). Therefore, 14, which is slightly larger than
the maximum Program Defects (12) by 2, was chosen as βi. Next, all task Pro-
gram Defects were subtracted from this βi. Till now, the task evaluation data
set has been established for further analysis.

2.2 Analysis Tool

To analyze the task evaluation dataset in Table 2, we use two classical DEA
models (Table 3): the CCR model by Charnes, Cooper and Rhodes [12] and the
BCC model by Banker, Charnes and Cooper [13].The CCR model’s assumption
is Constant Return to Scale (CRS) and the BCC model’s assumption is Variable
Return to Scale (VRS). CRS assumes a linear relationship between inputs and
outputs [1] which is consistent with the productivity model:

p = y
x . (1)

VRS assumes a nonlinear relationship between inputs and outputs which is
consistent with cost estimation models like COCOMO. Those models generally
have the following form (P = productivity, x = effort, y = FP or SLOC, B > 1):

x = 1
pyB. (2)

226 L. Ruan et al.

Table 3. Analysis tools for hypothesises

(1) CCR Model (2) BCC Model

min θ-ε(Σ S+
i + Σ S−

i) min θ-ε(Σ S+
i + Σ S−

i)
s.t. θij0 -Σxijλj − s+

i = 0, i = 1, .., m s.t. θij0 -Σxijλj − s+
i = 0, i = 1, .., m

∑

ykjλj - ykj0 - s−k = 0, k = 1, .., s
∑

ykjλj - ykj0 - s−k = 0, k = 1, .., s
∑

λj = 1
λj ≥ 0, j = 1, .., n λj ≥ 0, j = 1, .., n
s+

i ≥ 0 s+
i ≥ 0

s−i ≥ 0 s−i ≥ 0

Fig. 1. CRS and VRS models

DRS (Decreasing Returns to Scale) and IRS (Increasing Returns to Scale)
are two special cases of VRS. As CRS indicates the linear relationship between
inputs and outputs, IRS (DRS) indicates that an increase in one unit’s inputs
will yield a greater (or less) proportionate increase of its outputs (Fig. 1).

3 Data Analysis and Empirical Results

In this section, we carefully discuss data analysis processes and the results for
the two hypothesises described in Section 1.

3.1 Hypothesis 1: Can the Relatively Efficient Tasks Be Identified
to Establish the Task Performance Benchmark Under
Multivariate and VRS Constraints?

To investigate our hypothesis H1, we first use CCR and BCC models (Table 3)
to quantitatively calculate the efficiency score (θ) of the tasks. The efficiency
score (θ) of task is between 0 and 1. A task with efficiency score of 1 is relatively
efficient. The efficiency scores obtained from these models are listed in Table 4.

From Table 1, we can see that the task performance evaluation process has
multivariate inputs and outputs (one input like Effort ; three outputs like Pro-
gramm Size, Programm Defects and Documents). From Table 4, it can be further

Empirical Study on Benchmarking Software Development Tasks 227

Table 4. Efficiency scores of tasks obtained from BCC and CCR models

Tj Size Efficiency Score Tj Size Efficiency Score

CCR BCC CCR BCC

1 1579 1.0000 1.0000 16 620 0.8946 1.0000
2 1320 0.9186 0.9348 17 598 0.5529 0.5661
3 1202 0.9422 1.0000 18 568 0.7788 1.0000
4 1000 0.7953 1.0000 19 460 0.4704 0.4730
5 980 0.7561 0.7685 20 458 0.4918 0.5078
6 940 0.8217 0.8659 21 345 0.5923 0.5962
7 824 0.7626 0.8125 22 263 0.6826 0.7843
8 763 0.9593 0.9735 23 236 0.7648 0.7861
9 744 0.8375 0.9120 24 233 0.6637 0.6710
10 735 0.6104 0.6235 25 220 0.9368 1.0000
11 725 0.9046 0.9717 26 200 0.5128 0.5255
12 718 0.8727 0.9172 27 178 0.5298 0.5474
13 700 0.7323 0.9332 28 155 0.8475 0.8750
14 685 0.9182 0.9247 29 144 1.0000 1.0000
15 678 0.9836 1.0000 30 124 1.0000 1.0000

observed that the relative performance scores for each task have already been
obtained under the above multivariate inputs/outputs constraints using DEA.
These results reveal that the relatively efficient tasks can be identified under
multivariate inputs/outputs using DEA.

From Table 4, it can be further observed that the CCR only puts T1, T29

and T30 on the efficiency frontier. The BCC puts T1, T3, T4, T15, T16, T18, T25,
T29 and T30 on the efficiency frontier. By further comparison, we can find that
the notable difference between the results of CCR and BCC lies in that T3, T4,
T15, T16, T18 and T25 are positioned on the efficiency frontier in BCC while not
recognized as the relatively efficient tasks in CCR. This result reveals that the
BCC model seems to have a better capability to establish different performance
benchmarks for tasks of different sizes.

For example, in the CCR model, developers can only set T1, T29 and T30 as
the task performance benchmarks. In the BCC model, developers can get more
fine-grained efficiency scores (T1, T3, T4, T15, T16, T18, T25, T29 and T30) which
enable developers to establish much fine-grained performance benchmarks for
tasks of different sizes. To make it clearer, let us use T14 as an example. In BCC,
developers can benchmark T14 on T15. In CCR, developers can only benchmark
T14 on T1, T29 or T30. The size difference between T14 and T15 is obviously
much smaller than that of T14 between T1, T29 or T30. This result surely shows
that the DEA VRS model (BCC) seems to be more appropriate to evaluate
software development tasks with similar scale and ensure that relatively larger
tasks are compared with other relatively larger tasks and relatively smaller tasks
with relatively smaller tasks than CCR. Further, for our task data set (Table
2), by using the DEA VRS model, one task benchmarking solution may be that
developers can identify {T1, T3, T4 } as the performance benchmark for relatively

228 L. Ruan et al.

large tasks, {T15, T16 ,T18} for relatively middle-scale tasks, and {T29, T30} for
relatively small tasks .

Furthermore, we calculate the average of the DEA VRS efficiency to de-
rive quantitative improvement suggestions. The average VRS efficiency (Emean),
standard deviation (SD), minimum VRS efficiency (Emin) and the number of
efficient tasks (Neff) for our task data set (Table 2) are shown in Table 5.

Table 5. Average efficiency results of ISCAS task data set

N Emean SD Emin Neff

VRS 30 0.8323 0.1813 0.4730 9

From a process improvement perspective, these average efficiency figures tell
us that there is a potential for improvement of such tasks between 10 to 20
percent compared with the best practices tasks.

To sum up, from the above analysis results, we can conclude that although
development tasks are much fine-grained compared with projects at an orga-
nization level and has multivariates and VRS properties, the relatively efficient
tasks can be identified as the performance benchmark using DEA. Moreover, the
DEA VRS model seems to be more appropriate for benchmarking software de-
velopment tasks with the merits of dealing with multivariate and VRS properly
and enabling developers to establish different task performance benchmarks for
tasks of diffident scale. Moreover, at the aid of DEA VRS efficency, the potential
of quantitative improvement of tasks can be further provided for developers.

The above results confirm our hypothesis H1, i.e.:

The relatively efficient tasks can be identified as the task performance
benchmark under multivariate and VRS constraints using DEA. We also
find that DEA VRS model seems to be more appropriate for benchmarking
software development tasks.

3.2 Hypothesis 2: Can Different Reference Sets for Each Relatively
Inefficient Task Be Established Under Multivariate and VRS
Constraints?

After the relatively efficient tasks have been identified given that H1 holds,
tasks have thus been clearly classified into relatively efficient and inefficient ones.
Surely developers can treat all the relatively efficient tasks as a whole as the
performance benchmark for each inefficient task. As each identified efficient task
will have different improvement value to the inefficient one, it is surely vital for
developers to establish different reference sets for each different inefficient task.

By carefully investigating the analysis tools (Talbe 3), we define a reference
set of the task Tj {j = 1, ..., n} as:

RSj = {Tjr : λjr �= 0, r = 1, ..., n}

Empirical Study on Benchmarking Software Development Tasks 229

It should be noted that each task Tjr in the reference set RSj is relatively
efficient. For convenience, we also call each efficient task Tjr in the reference set
as a peer of the task Tj . The corresponding λjr (calculated from Table 3) of
the peer Tjr is called peer weight. The peer weight indicates the importance of
the peer Tjr to the given task Tj. Via the peers {Tjr} and their weights {λjr},
developers can further determine which peer (efficient task) is of the biggest
improvement value to the task Tj and thus need to be learned more from. Table
6 shows the reference relationships (the peer set and the peer weight) among
tasks in Table 2.

For example, in Table 6, developers can find that T7 derives a reference set of
tasks {T1, T30} in CCR result. By further investigating the peer weight of each
peer in the above reference set {T1, T30}, developers can determine to choose
T30 as the most suitable task to learn best practices from because T30 has the
biggest peer weight (0.74) in the peer set {T1, T30}. Similarly, in BCC result,
developers can determine to emulate best practices from T25 by comparing the
peer weight among the reference set { T1, T3, T4, T25 } of T7. The reference set
and the most valuable task to emulate for the other tasks in Table 6 can be
derived in a similar way.

To sum up, by investigating the reference relationships using DEA, developers
can establish different reference sets for each relatively inefficient task. Moreover,
with the aid of peer weights of the peers, developers can further find which task is
of the biggest improvement reference value to his own personal software process.

The above results confirm our hypothesis H2, i.e.:

Different reference sets for each relatively inefficient task to borrow best
practices from can be established under multivariate and VRS constraints
by investigating the task reference relationships using DEA.

4 Sensitivity Analysis

DEA identifies best practice rather than the average or say the best 10 percent,
which makes the techniques very sensitive to extreme observations. It is therefore
necessary to do a sensitivity analysis of outliers. There are several techniques
(e.g., superefficiency and analysis of reference units) each with their strengths
and limitations depending on the purpose of the DEA analysis. The purpose of
our DEA-based task analysis is twofold: first to identify best practice tasks as well
as the reference tasks for individual tasks and second, to determine the average
efficiency of the software development tasks to quantify the overall potential
for performance improvement. Based on these two purposes, the simplest and
probably most reasonable sensitivity analysis is to remove all the frontier tasks
one by one and study the effect on the mean efficiency [1].

Our task data set has nine tasks {T1, T3, T4, T15, T16, T18, T25, T29, T30} (see
Table 4) on the VRS frontier. We do sensitivity analysis by removing each of the
nine tasks one at a time. We then compare Emean in Table 5 and Table 7.

We observe that none of the frontier tasks are extreme in the sense that
their removal hardly influence the average efficiency. i.e., there is still a potential

230 L. Ruan et al.

Table 6. Reference relationships of ISCAS task data set

- ES: Efficiency Score;
- P:Peer;

- PW: Peer Weight

CCR BCC CCR BCC

Tj ES P PW ES P PW Tj ES P PW ES P PW

1 1.0000 1 1.0000 1.0000 1 1.0000 14 0.9182 1 0.3594 0.9247 1 0.2494
2 0.9186 1 0.8180 0.9348 1 0.7803 30 0.9479 15 0.3577

29 0.1970 4 0.0658 30 0.3929
29 0.1539 15 0.9836 1 0.3075 1.0000 15 1.0000

3 0.9422 1 0.6857 1.0000 1 1.0000 30 1.5526
30 0.9619 16 0.8946 1 0.2329 1.0000 16 1.0000

4 0.7953 1 0.5758 1.0000 4 1.0000 30 2.0342
29 0.2620 17 0.5529 1 0.3161 0.5661 1 0.2910
30 0.4277 29 0.5187 25 0.1417

5 0.7561 1 0.5916 0.7685 1 0.5826 30 0.1949 29 0.5373
29 0.3181 29 0.4174 18 0.7788 1 0.2715 1.0000 18 1.0000

6 0.8217 1 0.5510 0.7685 1 0.5826 30 1.1237
29 0.4024 29 0.4174 19 0.4704 1 0.2286 0.4730 1 0.2263
30 0.0972 29 0.3087 29 0.3394

7 0.7626 1 0.4638 0.8125 1 0.3125 30 0.4398 30 0.4343
30 0.7390 3 0.0833 20 0.4918 1 0.2183 0.5078 1 0.1881

4 0.1249 29 0.6240 4 0.0396
25 0.4792 30 0.1887 25 0.1337

8 0.9593 1 0.4180 0.9735 1 0.3469 29 0.6386
30 0.8307 15 0.1934 21 0.5923 1 0.1350 0.5962 1 0.0640

25 0.2825 30 1.0624 15 0.2309
30 0.1773 30 0.7051

9 0.8375 1 0.3882 0.9120 3 0.4470 22 0.6826 1 0.0423 0.7843 16 0.2857
30 1.0570 4 0.1005 30 1.5820 25 0.7143

16 0.0167 23 0.7648 1 0.0841 0.7861 1 0.0754
25 0.4358 30 0.8317 29 0.1131

10 0.6104 1 0.4123 0.6235 1 0.3959 30 0.8114
29 0.1917 25 0.3127 24 0.6637 1 0.0769 0.6710 1 0.0734
30 0.4430 29 0.2501 29 0.0646 29 0.1101

30 0.0414 30 0.8246 30 0.8165
11 0.9046 1 0.3739 0.9717 3 0.4775 25 0.9368 1 0.0411 1.0000 25 1.0000

30 1.0855 4 0.0426 30 1.2512
16 0.0071 26 0.5128 1 0.0548 0.5255 1 0.0478
25 0.4728 29 0.2315 29 0.3217

12 0.8727 1 0.3531 0.9172 1 0.2012 30 0.6466 30 0.6305
30 1.2938 15 0.2436 27 0.5298 1 0.0296 0.5474 1 0.0237

16 0.2824 29 0.9117 29 0.9763
25 0.2727 28 0.8475 1 0.0082 0.8750 25 0.1667

13 0.7323 1 0.3730 0.9332 1 0.0103 29 0.7997 29 0.0833
29 0.7712 4 0.6322 30 0.2171

29 0.3575 29 1.0000 29 1.0000 1.0000 29 1.0000
30 1.0000 30 1.0000 1.0000 30 1.0000

Empirical Study on Benchmarking Software Development Tasks 231

Table 7. Results of sensitive analysis of ISCAS task data set

-Task: The removed task
-Emean: Mean of EV RS

Task Emean

1 0.8408
3 0.8266
4 0.8303
15 0.8289
16 0.8370
18 0.8266
25 0.8327
29 0.8444
30 0.8364

improvement of around 20 percent (see Table 7). This result verified that our
DEA-based evaluation (Table 4, Table 6) of ISCAS software development tasks
(Table 2) are reasonable.

5 Conclusions and Future Work

This empirical study focuses on the question of “Can we benchmarking software
development tasks under multivariate and VRS constraints? If so, how to?”.

The analysis of experience data within Institute of Software, Chinese Academy
of Sciences (ISCAS) using Data Envelopment Analysis (DEA) indicates that the
ideas and techniques of benchmarking software projects, which is more bene-
ficial to organization’s software process improvement, can be deployed at the
software development task level, which is more beneficial to developers’ personal
software process improvement. And we find that our DEA-based approach is
helpful to benchmark software development tasks under multivariate and VRS
constraints. Moreover, results also reveal that the DEA VRS model allows de-
velopers to gain new insight about how to identify the relatively efficient tasks
as task performance benchmark and how to establish different reference sets for
each relatively inefficient task under multivariate and VRS constraints. We thus
recommend DEA VRS model be used as the default technique for appropriately
benchmarking software development tasks. Our results are beneficial to total
quantitative software process improvement (especially, PSP improvement). To
the best of our knowledge, we believe that it is the first time to report such com-
prehensive and repeatable results of benchmarking software development tasks
using DEA.

Our future work will concentrate on the following topics. Firstly, metrics of
software development tasks can be further extended based on the changing and
different requirements of software organizations. We also plan to further evaluate
the software development tasks using DEA to analyze the developer’s personal
software process change effects. Secondly, it is useful to investigate more in depth

232 L. Ruan et al.

DEA versus other benchmarking models (e.g. regression analysis) on software
development tasks. Thirdly, we are developing an interactive and visual tool to
provide more supports for benchmarking software tasks using DEA.

Acknowledgments

This work is supported by the National Natural Science Foundation of China
under grant Nos. 60573082, 60473060, 60673121; the National Hi-Tech Research
and Development Plan of China under Grant No. 2006AA01Z185; the National
Key Technologies R&D Program under Grant No. 2005BA113A01. One of the
authors, Yun Yang, gratefully acknowledges the support of K. C. Wong Educa-
tion Foundation, Hong Kong.

References

1. Stensrud, E., Myrtveit, I.: Identifying High Performance ERP Projects. IEEE
Transactions on Software Engineering 29(5) (2003) 398–416

2. Humphrey, W.S.: Introduction to the Team Software Process. Addison Wesley
Professional (1999)

3. Stark, J.A., Crocker, R.: Trends in Software Process: The PSP and Agile Methods.
IEEE Software 20(3) (2003) 89–91

4. Katrina D. Maxwell, P.F.: Benchmarking Software Development Productivity.
IEEE Software 17(1) (2000) 80–88

5. Farris, J.A., G.R.V.A.E.L.G.: Evaluating the Relative Performance of Engineering
Design Projects: A Case Study Using Data Envelopment Analysis. IEEE Transac-
tions on Engineering Management 53(3) (2006) 471– 482

6. ISBSG: Worldwide Software Developmentthe Benchmark. Technical Report Re-
lease 5, International Software Benchmarking Standards Group (1998)

7. Myrtveit, I., Stensrud, E.: Benchmarking COTS Projects Using Data Envelopment
Analysis. In: Sixth International Software Metrics Symposium. (1999) 269–278

8. Malaiya, Y.K., Denton, J.: Module Size Distribution and Defect Density. Software
Reliability Engineering (2000) 52–71

9. Institute, P.M.: A Practice Standard for Earned Value Management, New
Square.PA (2005)

10. Qing, W., Li, M.S.: Measuring and Improving Software Process in China. In: Pro-
ceedings of the 4th International Symposium on Empirical Software Engineering
(ISESE’05, Australia (November 2005) 17–18

11. H., S.: Undesirable Outputs in Efficiency Valuations. European Journal of Oper-
ation Reseach 132(2) (2001) 400–410

12. Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the Efficiency of Decision
Making Units. European Journal of Operation Research 2 (1978) 429–444

13. Banker, R.D., Charnes, A., Cooper, W.: Some Models for Estimating Technical
and Scale Inefficiencies in Data Envelopment. Management Science 30 (1984)
1078–1092

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 233–245, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Empirical Study on Establishing Quantitative
Management Model for Testing Process

Qing Wang 1, Lang Gou 1, 2, Nan Jiang 1, 2, Meiru Che 1, 2,
Ronghui Zhang 1, 2, Yun Yang 1, 3, and Mingshu Li 1

1 Institute of Software, Chinese Academy of Sciences
2 Graduate University of Chinese Academy of Sciences

{wq,goulang,jiangnan,chemeiru,zhangronghui,
mingshu}@itechs.iscas.ac.cn

3 CITR, Swinburne University of Technology, Australia
yyang@ict.swin.edu.au

Abstract. Frequently, effort of defect detecting and fixing are counted into
software testing activities/phase. Current leading software estimation methods,
such as COCOMO II, mainly estimate the effort depending on the size of
software product and allocate testing effort proportionally. It can not predict
detecting and fixing effort accurately. In fact, testing effort is significantly
influenced by the quality of other software development activities. These lead
to the difficulty of the testing effort to be estimated accurately. It is a
challenging issue for quantitative software process management. In this paper,
we propose an empirical method to identify performance objectives, establish
performance baseline and establish quantitative management model for testing
process. The method has been successfully applied to a software organization
for their quantitative management of testing process.

Keywords: Software measurement, Quantitative process management, Testing
process, Process performance baseline.

1 Introduction

Testing is an important method for quality control. It is also an important process that
needs to be managed quantitatively for high maturity organizations. However,
quantitative management model of testing is complex because it is constrained not
only by the size of product, but also by the quality of implementation activities, such
as design and coding. The more defects, the more effort is needed to fix and verify
them. How to estimate the effort and the defects related data, establish performance
baseline and quantitative management model of testing process is challenge. In fact,
many software projects delay due to the slippage of the testing activities.

Many estimation methods focus on estimating or predicting the effort and defect
separately. For example, COCOMO II [1] is a famous cost estimation method with a
family of extension models respecting to different types of development needs.
COQUALMO [1] is one of these models which can be used to estimate quality of
software product in terms of defect density. But it does not consider the
interrelationship between defect and effort. The testing effort comes mainly from the
general percentage of the total estimated effort.

234 Q. Wang et al.

As we know, even though there are many verification activities during the software
development lifecycle, testing is still the most common and important method to
detect and fix defects. The defects detected in testing are injected not only from
coding, but also from requirements analysis and software design. In this paper, we
propose an empirical method of establishing quantitative management model for
testing process. Based on the method, the performance objectives of testing process
are identified. Then some statistical techniques are used to analyze the data related to
these objectives and some interesting empirical results are found. The method has
been successfully applied to a software organization and appears very useful in
helping software organizations quantitatively manage testing process.

Institute of Software, Chinese Academy of Sciences (ISCAS) is a research and
development organization in China which is appraised and rated at CMMI maturity
level 4. ISCAS developed a toolkit called SoftPM [2][12] which is used to manage
software project and has been deployed to many software organizations in China. The
data used in this paper comes from 16 projects based on facilitating SoftPM.

In this paper, the empirical method of establishing quantitative management model
for testing process is presented in Section 2. The application of establishing quantitative
management model for testing process is discussed in Section 3. Section 4 presents how
to quantitatively manage testing process in a software organization based on the method.
Related work is discussed in Section 5. Section 6 summarizes our conclusions and
points out future work.

2 Empirical Method

This section will present our empirical method of establishing quantitative
management model for testing process. The three steps of the method are to: (1)
identify the performance objectives (P-Objs) to be managed quantitatively and
construct data samples; (2) establish the process performance baseline (P-BL) for the
identified P-Objs; and (3) analyze the correlations between the identified P-Objs.

2.1 Identify P-Objs and Construct Data Samples

Normally, effort of defect detecting/fixing and defect injected phase are sensitive data
that we should consider for testing process. A general assumption is that the effort of
defect detecting and fixing should consume a certain percentage in total development
effort, and the effort of defect fixing is influenced by the defect number and the defect
injected phase. In our method, three P-Objs have been identified including:

(1) Percentage of Detecting Effort (PDE): Detecting effort means the effort for all
detecting activities including test planning, test case preparing, test implementation
and fix verifying. PDE is the percentage of the detecting effort in the total effort.

(2) Defect Injection Distribution (DID): In general, many software organizations
collect defect data for quality control. There are always some defects injected in early
phases which are only detected until the testing activities even in the high maturity
organizations. In our method, three primary phases, namely requirements, design and
coding, are used to classify the corresponding injected phases for each defect. The
corresponding percentages of defects injected in the three phases are denoted as

 An Empirical Study on Establishing Quantitative Management Model 235

DID_R, DID_D and DID_C respectively. The principles of assigning the injected
phase are described as: a) defect injected in the requirements phase: a defect that is
due to poor requirements, such as inconsistency and unclear requirements; b) defect
injected in the design phase: a defect that is due to poor design, such as unclear
interface, misunderstanding of requirements and incomplete data verification; and c)
defect injected in the coding phase: a defect that is due to poor coding, such as
incorrect words in a Web page and inconsistent code against requirements or design.

(3) Percentage of Fixing Effort (PFE): Fixing effort data means the effort for all
defect fixing activities including defect analysis and fixing. PFE is the percentage of
the fixing effort in the total effort.

2.2 Establish P-BL of Identified P-Objs

P-BL is the basis for quantitative process management. It is established based on the
statistical analysis of historical data. There are many methods and techniques, such as
BSR (Baseline-Statistic-Refinement) [4] and SPC (Statistical Process Control) [6][7]
which can be used to establish P-BL.

Defect fixing is an important activity of software development which demands
certain effort. In International Software Benchmark Standard Group (ISBSG)
(www.isbsg.org), the fixing effort is collected and counted in rework effort. However,
many effort estimation methods do not pay sufficient attention to the effort of defect
fixing; instead, just include it in the testing activities. Frequently, defect detecting is
performed by test team, and defect fixing is performed by development team.
Estimating their effort separately is helpful for organization to plan their human
resource and schedule. In addition, the fixing effort is strongly correlated with the
number and injected phase of defects. Splitting them and establishing their P-BLs are
very useful to manage testing process quantitatively.

For high maturity software organizations, the defect related process performance,
such as defect injection, defect removal, and defect density, also has some common
and stable properties. Many methods discuss the defect removal ratio and defect
density. These are very useful and easy to understand. Here we focus on the defect
injection and the correlation between the defects and effort needed to fix them.

2.3 Analyze Correlation Between P-Objs

In the testing activities, it is the common knowledge that the earlier a defect is
injected, the more effort is needed to fix it. In contrast, the later a defect is injected,
the less effort is needed to fix it. So, defects injected in an earlier phase, such as the
requirements phase, have the effort of increasing the defect fixing effort, whereas,
defects injected in a later phase, such as the coding phase, have the effort of
decreasing the defect fixing effort.

After constructing defect related data samples, software organizations can discover
some more precise correlation between defects and fixing effort. Our method is based
on this hypothesis. There are some statistical methods which can be used to analyze
the correlation between DID and PFE, such as multiple regression analysis [11]. After
the correlation between DID and PFE has been analyzed, the regression equation
between DID and PFE can be used to refine the estimation of fixing effort after

236 Q. Wang et al.

testing. The outcome can provide a guideline to estimate the effort of defect fixing
based on the defects and the distribution of injection phases. So, after testing, the
project managers could re-estimate and re-plan their fixing effort effectively. The
factors of regression equation could be refined and calibrated based on the historical
data of software organizations. Then it can be more applicable in these organizations.

3 Establish Quantitative Management Model for Testing Process

Based on the empirical method presented in Section 2, we collected testing process
data from 16 Web-based system development projects and concluded some empirical
results. These 16 projects came from two closely-related software organization
entities. The two entities have the self-governed process management system and
were rated at CMMI maturity level 3 and moving towards CMMI maturity level 4 in
the period of our data collection.

3.1 Data Sample

Web-based development techniques have been widely applied in China. The projects’
characteristics are described in Table 1.

Table 1. Features of Web-based system development projects

Category Features
Architecture Browser / Server
Development process Iterate development and testing; Use prototype and documents to

confirm requirements; Refine through minor release software
Development cycle Less than one year
Quality goal Business software with high quality
Process maturity Upper CMMI maturity level 3.

All the 16 projects were successful projects with little schedule overruns, and they
all performed the requirements, design, coding and testing processes. Table 2
summarizes the brief information about the projects.

We collected the PDE, DID and PFE data from the 16 projects as presented in
Section 2.1. These data were reported by engineers and were collected in SoftPM
[2][12]. Table 3 shows the total effort, detecting effort, and PDE of the 16 projects.
Unfortunately, the detecting effort for individual requirements, design and coding
phases were not recorded. Hence we could only collect the total detecting effort for
the projects.

For the 16 projects, all the defects considered were detected in the testing
activities. These defects were classified into four categories: critical defects, serious
defects, non-critical defects and cosmetic defects. In this paper, we only describe the
total defects collected without distinguishing them. Table 4 shows the defects injected
in three primary phases of the 16 projects.

 An Empirical Study on Establishing Quantitative Management Model 237

Table 2. Brief information about the 16 Web-based system development projects

Proj. # of
staff

Schedule
(Months)

Size
(KLOC)

Application domain Process
performance

1 12 12 151.9 Application system integration
2 15 7 173.1 Tool development
3 5 6 18.2 Tool development
4 14 7.5 311.2 Application system integration
5 6 4 76.9 Website design and development
6 3 3 45.9 Website design and development
7 6 2 17.0 Information management
8 14 9 280.4 Tool development
9 4 5.5 45.0 Tool development

10 12 7 55.5 Information management
11 9 5 60.7 Tool development
12 4 2 19.6 Information management
13 11 9 90.4 Application system integration
14 12 4.5 250.5 Application system integration
15 5 6 80.0 Information management
16 4 7 30.0 Tool development

Successful
projects with
little schedule
overruns.

All performed
requirements,
design, coding
and testing
processes

Table 3. Total effort (Labor Hour), detecting effort (Labor Hour) and PDE of the 16 projects

Proj. Total
effort

Detecting
effort

PDE (%) Proj. Total
effort

Detecting
effort

PDE (%)

1 7048 1396 19.8% 9 3397 693 20.4%
2 11614 3734 32.2% 10 7114 1070 15.0%
3 3143 785 25.0% 11 6864 1684 24.5%
4 11177 3624 32.4% 12 1205 265 22.0%
5 2926 609 20.8% 13 14683 2684 18.3%
6 1313 182 13.9% 14 6579 2117 32.2%
7 1560 354 22.7% 15 4230 940 22.2%
8 10865 2566 23.6% 16 1934 401 20.7%

Table 4. Defects injected in each phase of the 16 projects

Requirements Design Coding Proj.
of defects DID_R # of defects DID_D # of defects DID_C

1 19 10.1% 41 21.8% 128 68.1%
2 118 15.6% 153 20.3% 483 64.1%
3 33 17.8% 61 33.0% 91 49.2%
4 251 18.7% 412 30.6% 682 50.7%
5 27 20.5% 44 33.3% 61 46.2%
6 17 13.3% 35 27.3% 76 59.4%
7 15 15.6% 28 29.2% 53 55.2%
8 135 14.1% 322 33.6% 501 52.3%
9 32 12.2% 82 31.2% 149 56.7%

10 15 13.9% 29 26.9% 64 59.3%
11 92 18.3% 116 23.1% 295 58.6%
12 12 14.0% 26 30.2% 48 55.8%
13 18 11.8% 36 23.5% 99 64.7%
14 53 11.0% 142 29.5% 286 59.5%
15 78 17.6% 114 25.7% 251 56.7%
16 20 13.9% 42 29.2% 82 56.9%

Table 5 shows the total effort, fixing effort, and PFE of the 16 projects.

238 Q. Wang et al.

Table 5. Total effort (Labor Hour), fixing effort (Labor Hour) and PFE of the 16 projects

Proj. Total
effort

Fixing
effort

PFE (%) Proj. Total
effort

Fixing
effort

PFE(%)

1 7048 762 10.8% 9 3397 420 12.4%
2 11614 2370 20.4% 10 7114 1403 19.7%
3 3143 632 20.1% 11 6864 1325 19.3%
4 11177 2839 25.4% 12 1205 185 15.4%
5 2926 536 18.3% 13 14683 2214 15.1%
6 1313 108 8.2% 14 6579 824 12.5%
7 1560 245 15.7% 15 4230 802 19.0%
8 10865 1521 14.0% 16 1934 264 13.7%

3.2 P-BL of Identified P-Objs

First, we analyze the PDE data in Table 3. The XmR (individuals and moving range)
control chart [6] is applied. Assume that the sequence of data sample is iX , the
moving range (mR) is:

1−−= iii XXmR i =2…n

According to the theory of statistics, we can get the upper control limit (UCL),
central line (CL), and lower control limit (LCL) for mR-chart and X-chart as follows:

mRUCLmR 268.3= , mRCLmR = , 0=mRLCL

mRXUCLx 660.2+= , XCLx = , mRXLCLx 660.2−=

The XmR chart control limits for PDE data are shown in Table 6. We construct the
XmR chart in Fig. 1 by using the PDE data in Table 3 and control limits in Table 6.
As shown in Fig. 1, for both the mR-chart and X-chart, all data points distribute
between the upper control limit and the lower control limit. The process appears
stable. The CLx (22.9%) can be considered as the P-BL of PDE to be used to estimate
the effort of defect detecting and schedule of testing process during project planning.

Then, we analyze the DID data in Table 4. Similarly, we use the XmR control chart
to analyze the distribution of DIDs. Table 7 shows the XmR chart control limits and
Fig. 2 shows the XmR control charts for DID_R, DID_D and DID_C. For the three

Table 6. XmR chart control limits for PDE data

UCLmR CLmR LCLmR UCLx CLx LCLx
22.9% 7.0% 0 41.5% 22.9% 4.2%

Fig. 1. XmR chart for PDE data of the 16 projects

 An Empirical Study on Establishing Quantitative Management Model 239

XmR charts in Fig. 2, all data points distribute between the upper control limit and the
lower control limit in both mR-chart and X-chart. Hence, the DID_R, DID_D and
DID_C were converged and the distribution of defect injection appears stable.
Therefore, the 14.9%, 28.0%, 57.1% can be accepted as the P-BLs of DID_R, DID_D
and DID_C respectively to be used to estimate the distribution of defect injection.

Table 7. XmR chart control limits for DID data

DID UCLmR CLmR LCLmR UCLx CLx LCLx
DID_R 10.2% 3.1% 0 23.2% 14.9% 6.6%
DID_D 15.1% 4.6% 0 40.3% 28.0% 15.8%
DID_C 15.9% 4.9% 0 70.0% 57.1% 44.2%

(a) XmR chart for DID_R (b) XmR chart for DID_D

(c) XmR chart for DID_C

Fig. 2. XmR charts for DID_R, DID_D and DID_C data of the 16 projects

Table 8. XmR chart control limits for PFE data

UCLmR CLmR LCLmR UCLx CLx LCLx
15.1% 4.6% 0 28.6% 16.2% 3.9%

Fig. 3. XmR chart for PFE data of the 16 projects

240 Q. Wang et al.

Finally, we analyze the PFE data. Similarly, we use the XmR control chart. Table 8
shows the XmR chart control limits and Fig. 3 shows the XmR control chart for PFE.
As shown in Fig. 3, the PFE also appears stable and converged. In this case, the CLx
(16.2%) can be treated as the P-BL of PFE to be used to estimate the effort of defect
fixing and schedule of testing process during project initial planning.

3.3 Correlation Between P-Objs

As mentioned in Section 2.3, DID will influence the PFE. In this section, we analyze
the correlation between PFE and DID_R/DID_C. PFE and DID_D are uncorrelated.
Fig. 4 is the scatter diagram of DID_R, DID_C and PFE data based on Table 4 and
Table 5. In Fig. 4, as expected, PFE increased with DID_R, which means that DID_R
and PFE have positive correlation; and PFE decreased with DID_C, which means that
DID_C and PFE have negative correlation.

Corelation betw een DID_R, DID_C and PFE

0.00%

15.00%

30.00%

5.00% 20.00% 35.00% 50.00% 65.00% DID

P
F

E

DID_R DID_C Trendline(DID_R) TrendLine(DID_C)

Fig. 4. Correlation between DID and PFE

In detail, we analyze the multiple correlations between DID_R, DID_C and PFE by
using multiple linear regression. Let XR, XC, Y denote the data set on DID_R, DID_C
and PFE of the 16 projects based on Table 4 and Table 5 respectively. By performing
linear regression on independent variables XR, XC and dependent variable Y using
Matlab 6.1 (http://www.mathworks.com), we first derive the binary linear regression
equation as follows:

Y = -0.1597 + 1.3712 * XR + 0.2065 * XC

Then, an F test [11] is performed. As calculated by Matlab 6.1, we get the F
statistic F = 9.5484. Let n denotes the number of data points which is equal to 16, and
k denotes the number of independent variables which is equal to 2. At the confidence
level α=0.05, the critical value of Fα=0.05(k, n-k-1) = Fα=0.05(2, 13) = 3.81. It is clear that
Fα=0.05 (2, 13) < F. Therefore, the correlation between DID_R, DID_D and PFE is
linearly prominent. The regression equation between DID_R, DID_C and PFE can be
used to adjust the estimation of defect fixing effort after testing.

4 Manage Testing Process Quantitatively

We applied our empirical method on an ongoing project of the organization to
estimate, plan and manage its testing process quantitatively. The P-BLs and
correlation established above plus some other baselines to compose the quantitative
management model of the organization process management system. The steps of
applying the quantitative management model for testing process are: (1) based on the

 An Empirical Study on Establishing Quantitative Management Model 241

P-BL of the P-Objs, estimating the defect detecting effort, defect fixing effort and
number of defects injected in each phases during the project planning; (2) through the
testing activities, collecting the defect related data and re-estimating the effort of
defect fixing when the actual P-Objs has abnormality.

4.1 Initial Estimation

As mentioned earlier, the organization was rated at CMMI maturity level 3 and was
moving to CMMI maturity level 4. It had some P-BLs in place, such as detected
defect ratio and software productivity. The detected defect ratio refers to (defects /
code-size) where the defects are detected in testing activities (except the unit testing).
The indicator of detected defect ratio is used to control the quality of software before
submitted for testing. The software productivity is the mean productivity (total-size /
total-effort) which can be used to estimate the total effort. Besides these, we added the
empirical results presented in Section 3 to optimize project management. The new
extended P-BL of Web-based system development projects in the organization is
shown in Table 9 with some new quantitatively control objectives defined. An
ongoing Web-based system development project (project No.17) was selected in the
organization. Table 10 summarizes the brief information about the project.

Table 9. Extended P-BL of Web-based system development projects

Detected defect ratio
- DDR

Software
productivity - Prod

PDE DID_R, DID_D, DID_C PFE

4.01 Defects/KLOC 2.3 KLOC/Labor Month 22.9% 14.9%, 28.0%, 57.1% 16.2%

Table 10. Brief information about project No.17

of staff Plan schedule (Months) Plan size Development approach
8 4 67 KLOC Increment and Iteration

Project No.17 was planned to complete the whole software product through two
iterations. Each iteration implemented half of the product functions. Before the first
iteration started, the project manager and skilled engineers estimated the sizes of both

Table 11. Estimation for each iteration of project No.17

Estimation 1st Iteration 2nd Iteration
Size (KLOC) 30 37
Schedule (Months) 2 2.4
Total defects detected in testing activities (Size*PRDE) 120 148
Defects injected in requirements (Total defects*DID_R) 18 22
Defects injected in design (Total defects*DID_D) 34 42
Defects injected in coding (Total defects*DID_C) 68 84
Total effort (Labor Month) (Size/Prod) 13.0 16.1
Detecting effort (Labor Month) (Total effort*PDE) 3.0 3.7
Fixing effort (Labor Month) (Total effort*PFE) 2.1 2.6
Development effort (Labor Month) (Total effort*(1-PDE-PFE)) 7.9 9.8

242 Q. Wang et al.

iterations. Then, the total defects detected in the testing activities were estimated by
using formula: Size*DDR; the total effort was estimated by using formula: Size/Prod.
After that, the estimation for both iterations could be elaborated further, as shown in
Table 11. Based on the estimation, project manager of project No.17 established a
project plan of both iterations and performed against it.

4.2 Tracking and Re-estimation

During the testing activities of the first iteration, the defects injected in the
requirements, design, and coding phases were 46, 30 and 62 respectively.
Correspondingly, DID_R (XR), DID_D and DID_C (XC) were 33.3%, 21.8% and
44.9%. Compared to the P-BL in Table 9 and the control limits in Table 7, DID_R
was higher, which means more defects were injected in the requirements phase. Given
this abnormality, the project manager did some further analysis. As mentioned earlier,
the defect fixing effort should be greater due to larger number of defects injected in
the requirements phase. The PFE (Y) was re-estimated based on the regression
equation (Y = -0.1597 + 1.3712 * XR + 0.2065 * XC). The new PFE was 38.7%. The
re-estimated fixing effort was extended from 2.1 labor months to 6.9 labor months.
With the effort increasing, the schedule of the first iteration had to be delayed by 10
work days and one engineer was added. After the first iteration, the actual data were
collected in Table 12.

Since the actual DID of the first iteration was higher, the processes of requirements
development, requirements management, especially the requirements review may
have some problems. In reality, there could be many possible causes leading to the

Table 12. Actual performance data of the project No.17

Actual performance data 1st Iteration 2nd Iteration
Size (KLOC) 28 34
Schedule (Months) 2.5 1.9
Total defects detected in testing activities 138 132
Defects injected in requirements 46 18
Defects injected in design 30 40
Defects injected in coding 62 74
Total effort (Labor Month) 20 14
Detecting effort (Labor Month) 4.4 3
Fixing effort (Labor Month) 7.1 2.5
Development effort(Labor Month) 8.5 8.5

Pareto Diagram

16

7
3

20

43%

78%

93%
100%

0

5

10

15

20

25

unclear requirements inconsistent requirements communication requirements change
Cause

D
ef

ec
ts

0%

50%

100%

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

Defects Cumulative Percentage

Fig. 5. Causal analysis of poor requirements phase

 An Empirical Study on Establishing Quantitative Management Model 243

poor quality of the requirements phase. We analyzed all 46 defects injected in the
requirements phase, and used a Pareto diagram to rate the major causes, as shown in
Fig. 5. In Fig. 5, almost 80% of the 46 defects were due to the first two causes:
unclear requirements and inconsistent requirements. Based on the causal analysis, the
organization improved the requirements review process.

During the second iteration, the defects related data were collected (Table 12). The
defects injected in the requirements, design and coding phases were similar to the
estimation. Therefore, we did not need to re-estimate the effort of defect fixing. The
second iteration was completed on time according to the initial schedule, and the
actual performance (Table 12) was similar to the estimation (Table 11). Hence, the
testing process of the second iteration is normal and stable.

In the future, when the organization has more project data of testing process, they
can refine the P-BLs for PDE, DID and PFE. The experience from this case study
validates that the empirical method presented in Section 2 is helpful for improving
quantitatively managing testing process. And the empirical method can be used in
initial estimation, tracking the process performance, identifying abnormality of
process, analyzing the causes, re-estimating the fixing effort and improving the
process to keep it controllable.

5 Related Work

COCOMO (COnstructive COst MOdel) II [1] is a widely-used estimation model,
which allows one to estimate the total effort of a project depending on the estimated
size. It provides two sets of empirical results on effort distribution for both waterfall
and RUP lifecycle phases, which can be used to estimate effort of each phase
including testing activities proportionally. COCOMO II can not predict the effort of
defect detecting and fixing accurately. COQUALMO (COnstructive QUALity
MOdel) [1] is a quality model extension to COCOMO II. It is used to estimate defects
injected in different activities, and defects removed by defect removal activities.
COQUALMO does not associate the defects with the effort of defect fixing.

Software Productivity Research (SPR) [3] (http://www.spr.com) is a provider of
consulting services to help companies manage software development processes. SPR
collected data from about 9,000 projects and reported the percentages of testing effort
for system software, military software, commercial software, MIS and outsourcing
software respectively. Osamu Mizuno et al. [13] develop a linear multiple regression
model of estimating the testing effort. In the model, the testing effort can be obtained
from the design effort and review effort, and also influenced by historical data factors.
Both of them do not distinguish the effort of detecting from the effort of fixing in the
testing activities.

The Rayleigh model [5][8][9] is based on Weibull’s statistical distribution.
Supported by a large body of empirical data, it is found that the defect detecting or
removal patterns follow Rayleigh’s curve. In this way, the Rayleigh model can be
used for predicting the potential software defects [10]. It can be concluded from the
Rayleigh model that there are some defects injected in early phases left to later phases
such as the testing activities.

244 Q. Wang et al.

The related work above shows that the defects related data have been paid much
attention by both academia and industry. In addition, there are much research on
defect distribution and testing effort. Unfortunately, the above methods do not
distinguish the effort of defect detecting from the effort of defect fixing. They also do
not present mechanisms to adjust the effort of defect fixing based on the defect
distribution. In this paper, we focus on identifying more performance objectives to
indicate the relationship between the effort and defects, which is valuable for
quantitative testing process management.

6 Conclusions and Future Work

In this paper, we propose an empirical method of identifying performance objectives
(P-Objs), establishing performance baseline (P-BL) and establishing quantitative
management model for testing process. From the empirical study, we find that the
defect injection distribution (DID) of the requirements, design and coding phases
have common and stable properties for high maturity software organizations. In
addition, the percentages of the detecting effort (PDE) and fixing effort (PFE) are also
similar. With the analysis of multiple regression, some correlations emerge between
the effort of defect fixing and the defect injection distribution. Based on the method, a
software organization established quantitative management model for testing process,
and quantitatively controlled an ongoing project. Through the application, we can
conclude that the empirical method is effective in quantitatively managing testing
process. The method also provides helpful insights for project managers to make the
detailed estimation for testing process, such as the distribution of defect injection, the
effort for detecting and fixing defects.

As future work, the empirical method addressed in the paper can be refined with
more studies and practices in different application domains. Some other factors
should be considered. For example, the differences in project size, personnel
capability and project type may affect the P-BLs of PDE, DID and PFE.

Acknowledgments. This work is supported by the National Natural Science
Foundation of China under grant Nos. 60573082, 60473060; the National Hi-Tech
Research and Development Plan of China under Grant No. 2006AA01Z182; the
National Key Technologies R&D Program under Grant No. 2005BA113A01. One of
the authors, Yun Yang, gratefully acknowledges the support of K. C. Wong Education
Foundation, Hong Kong.

References

1. Boehm, B.W., Horowitz, E., Madachy, R., Reifer, D., Clark, B.K., Steece, B., Brown,
A.W., Chulani, S., Abts, C.: Software Cost Estimation with COCOMO II. Prentice Hall
PTR (2000)

2. Wang, Q., Li, M.: Measuring and Improving Software Process in China. Proceedings of
the 4th International Symposium on Empirical Software Engineering, Australia (2005)
183-192

 An Empirical Study on Establishing Quantitative Management Model 245

3. Jones, C.: Software Assessments, Benchmarks, and Best Practices. Addison-Wesley
Professional (2000)

4. Wang, Q., Jiang, N., Gou, L., Liu, X., Li, M., Wang, Y.: BSR: A Statistic-based Approach
for Establishing and Refining Software Process Performance Baseline. Proceedings of the
28th International Conference on Software Engineering, Shanghai, China (2006) 585-594

5. Kan, S.H.: Metrics and Models in Software Quality Engineering. Addison-Wesley
Professional (2002)

6. A.Florac, W., D.Careton, A.: Measuring software process-Statistical process control for
software process improvement. Addison-Wesley Professional (1999)

7. Jalote, P., Saxena, A.: Optimum Control Limits for Employing Statistical Process Control
in Software Process. IEEE Transactions on Software Engineering VOL.28 (2002)
1126-1134

8. Norden, P.V.: Useful Tools for Project Management, Operations Research in Research and
Development. New York: John Wiley & Sons (1963)

9. Putnam, L.H.: A General Empirical Solution to the Macro Software Sizing and Estimating
Problem. IEEE Transactions on Software Engineering VOL. SE-4 (1987) 345- 361

10. Putnam, L.H., Meyers, W.: Measures for Excellence: Reliable Software on Time, Within
Budget. Prentice Hall PTR (1991)

11. Wooldridge, J.: Introductory Econometrics: A Modern Approach. South-Western College
Pub (2002)

12. Wang, Q., Li, M.: Software Process Management: Practices in China. Proceedings of the
Software Process Workshop, Beijing, China (2005) 317-331

13. Mizuno, O., Shigematsu, E., Takagi, Y., Kikuno, T.: On Estimating Testing Effort Needed
to Assure Field Quality in Software Development. Proceedings of the 13th International
Symposium on Software Reliability Engineering, Annapolis, MD (2002) 139-146

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 246–258, 2007.
© Springer-Verlag Berlin Heidelberg 2007

DynaReP: A Discrete Event Simulation Model for
Re-planning of Software Releases

Ahmed Al-Emran1,2,3, Dietmar Pfahl1,3, and Günther Ruhe1,2

1 Schulich School of Engineering, University of Calgary, Canada
2 Software Engineering Decision Support Laboratory, University of Calgary, Canada

3 Centre for Simulation-based Software Engineering Research, University of Calgary, Canada
{aalemran,dpfahl,ruhe}@ucalgary.ca

Abstract. Software release planning can be described as a process consisting of
the following three phases: (i) strategic release planning, i.e., the assignment of
features to subsequent releases; (ii) operational release planning, i.e., the alloca-
tion of resources to tasks within each individual release; and (iii) dynamic
re-planning, i.e., the revision of plans in order to handle unexpected changes
imposed on product/project managers responsible for the realization of individ-
ual releases. Example changes include the addition or removal of features
and/or developers, adjustments due to overestimated developer productivity, or
underestimated work volume of feature-specific tasks, and adjusted degrees of
task dependencies. The research presented in this paper mainly focuses on
phase (iii) in conjunction to phase (ii) of the release planning process, assuming
that phase (i) has already been completed. For that purpose, we present a dis-
crete-event simulation model called DynaReP (Dynamic Re-Planner), which
can be used for operational planning and re-planning of individual software re-
leases. The applicability, effectiveness, and efficiency of DynaReP are illus-
trated through a series of typical planning and re-planning scenarios.

Keywords: Software release planning, operational planning, re-planning, dis-
crete event simulation model, process simulation.

1 Introduction

One of the key questions of incremental software development is to decide which
features can be offered at which release. This decision depends on the customer
needs, technological constraints, and the resources and time frame available to im-
plement the features. This decision is very dynamic in its nature, as many planning
parameters and the features themselves are under continuous change [SSA96]. As a
consequence of that, we study re-planning of software releases in more detail in this
paper.

Good software release planning on both strategic and operational levels is ex-
tremely important [Pen02]. A bad release plan may cause late delivery of high-value
features, unsatisfied customers, budget overrun, and thus decreased competitiveness.
Software release planning can be done following a three phase solution procedure: (i)
Planning of releases on a strategic level, (ii) Planning individual releases on

 DynaReP: A Discrete Event Simulation Model for Re-planning of Software Releases 247

operational level for the next release, and (iii) Performing dynamic re-planning on the
operational level. Software release planning on strategic level (Phase i) involves deci-
sion-making about what new features to implement in which release. This takes into
account cumulative resource consumption and technological dependencies between
features. Release planning on operational level (Phase ii) involves decision-making
about the allocation of developers to tasks within a single release. Re-planning on
operational level (Phase iii) involves decision-making about the re-allocation of de-
velopers to tasks in the face of resource changes, feature changes, and observation of
planning mistakes due to wrong assumptions about feature values, effort needs, de-
veloper productivities, and task-dependency1 relationships. All of these decision-
making problems are inherently difficult [Mom04].

The research presented in this paper focuses on a simulation model – DynaReP
(Dynamic Re-Planner) – emphasizing on phase (iii) of the release planning procedure,
i.e., supporting the re-planning of operational release plans each time a change in
planning parameters is identified during the development of a release. Although the
model is capable to perform phase (ii) for initial operational plan generation, we focus
on phase (iii) as there exist no effective solution to the re-planning problem. The pro-
posed approach is applicable to any given solution of the decision-problem of phase
(i). Information on existing methods supporting phase (i) can be found in [RuS05].

Planning and re-planning of software releases can be formulated as a mathematical
optimization problem (see [NgR06] for planning and resource allocation). However,
these formulations are static in the sense that they do not allow for dynamic re-
planning as easily as the simulation-based approach does. In general, the scenarios for
re-planning discussed in this paper would be either impossible to model or would
need more effort to model them as part of an optimization-based approach.

The remainder of this paper is structured as follows. Section 2 provides the motiva-
tion behind this research based on existing work performed in the area of software
release planning. Section 3 describes the simulation model DynaReP. Section 4 illus-
trates the applicability and usefulness of DynaReP with the help of a case example.
Section 5 discusses issues related to planning performance and limitations. Finally,
Section 6 provides conclusion and future directions.

2 Related Work and Motivation

Both simulation and optimization approaches have been proposed in the context of
planning for software releases. For example, the discrete-event simulation model
presented in [HRD01] addresses some of the decision-problems associated with
phases (i) to (iii) of the release planning procedure. Assuming a continuous stream of
new incoming requirements, the model is used to investigate potential bottlenecks
within subsequent releases. Bottlenecks are associated with task overload situations,
i.e., situations in which the level of available resources assigned to specific tasks is
too small to process incoming new (or from previous releases postponed) require-
ments. The model is also used to evaluate resource allocation changes that supposedly
avoid previously identified overload situations. The problem dealt with in [HRD01] is

1 The amount of effort that has to be consumed by a task before work on a subsequent task

related to the same feature can begin.

248 A. Al-Emran, D. Pfahl, and G. Ruhe

different from the problem focused on in this paper for two reasons. Firstly, it does
not consider dependencies between requirements, and thus does not provide specific
feature allocations to individual releases. Secondly, it does not facilitate the evalua-
tion of specific developer allocations to tasks within individual releases.

EVOLVE* [RuN04] is a hybrid intelligent framework that was initially applied to
strategic software release planning. The objective of EVOLVE* is to create synergy
between computational intelligence applied to formalized problem description and the
application of the knowledge and experience of human experts. For software release
planning, the result is an optimal feature assignment to different releases that maxi-
mizes stakeholder satisfaction while balancing trade-offs between release time, effort,
and value. The decision support system ReleasePlannerTM (www.releaseplanner.com)
is based on EVOLVE* and has been introduced successfully into several companies
(e.g., Siemens, Corel, Trema Laboratories). While EVOLVE* addresses phase (i) of
the general release planning procedure, it does not focus on phases (ii) and (iii). That
is, EVOLVE* cannot answer how, by whom, and when individual features will be
realized within a single release, how long it will take to perform individual develop-
ment tasks, and how to perform re-planning when necessary.

OPTIMIZERASORP (Optimize Resource Allocation for Software Release Planning)
[NgR06] is an optimization approach that generates simultaneously feature allocation
plans for subsequent releases and operational feature implementation plans for indi-
vidual releases. Thus it combines phases (i) and (ii) of the general release planning
procedure. OPTIMIZERASORP considers tasks associated with features, a pool of de-
velopers to carry out these tasks, the productivity of developers to perform these
tasks, and mappings between tasks and developers for realization of features within
releases and maximizing release value. While OPTIMIZERASORP offers a guaranteed
degree of optimality2 for resource allocation for the purpose of release planning, it
does not support automatic re-planning, e.g., re-allocation of developers in the middle
of a release implementation due to changes in planning parameters.

“Lightweight Replanning” [ARM06] is a process model that supports the revision
of feature allocations to releases by comparing already assigned features of a specific
release under development with new features that are requested to be included in that
release. The purpose is to help decide instantly which of the old features should be
postponed to subsequent releases and replaced by new features. The re-planning ca-
pability offered by this approach exclusively focuses on release plans resulting from
phase (i). Issues on a more operational level, e.g., allocation of developers to feature
development tasks, cannot be addressed.

REPSIM-1 (Release Plan Simulator, Version-1) [PAR06] is a System Dynamics
simulation model that can perform stability analyses on existing release plans gener-
ated in phase (ii) of the general release planning procedure. Various stability analyses
types evaluate the sensitivity of existing plans to possible planning errors. Planning
errors can relate to alterations in expected personnel productivity, feature and task
specific work volume (effort), and degree of task dependency. Stability analyses al-
low release planners perform “what-if” analyses on the proposed plan that might help
them to be well prepared for easier and better manual re-planning than ad hoc

2 “Guaranteed degree of optimality” refers to a solution where its objective function value is

compared to an upper bound for the best possible objective function value.

 DynaReP: A Discrete Event Simulation Model for Re-planning of Software Releases 249

approaches in case unexpected changes occur. However, automatic re-planning is not
supported.

3 The DynaReP Model

DynaReP is a discrete-event process simulation model developed using EXTENDTM
(http://www.imaginethatinc.com). The following sub-sections describe first the most
important model parameters, constraints, variables, and controllers. Then the model
structure and underlying method is presented.

3.1 Model Capabilities

Applying DynaReP helps address the following research questions:

1. How to generate initial operational plans of single releases? This question involves
defining effective allocations of developers to feature development tasks.

2. How to perform automatic re-planning? Re-planning is needed when:
a. A new feature needs to be included in a release.
b. A planned feature is excluded from the release.
c. A developer becomes unavailable.
d. A developer needs to be added to the development team.
e. The estimated task dependency is bigger/smaller than expected.
f. The work volumes of features were under-estimated/over-estimated.
g. The productivities of developers were over-estimated/under-estimated.

It should be noted that DynaReP can be applied to perform re-planning due to the
occurrence of one event or any combination of the above listed events. In Section 4,
some of these re-planning scenarios we will be exemplified.

3.2 Model Heuristic, Parameters, Variables, Constraints and Controllers

The heuristic used for assigning developers to feature/task-pairs essentially consists in
matching the next available developer with the highest task-specific productivity to
the next waiting feature with the largest effort (for a specific task). If only one devel-
oper with very low productivity is currently idle, then this mapping procedure can
result in assigning a developer with low productivity to a large feature. To avoid such
a worst case situation, a set of threshold variables are defined which exclude develop-
ers with productivity below a certain value to be assigned to feature/task-pairs.

In the following, model parameters, variables, constraints and controllers are de-
scribed in detail. DynaReP offers of the following model parameters:

• Initial # Feats: The number of features planned to be implemented at the beginning
of the development. One Feature entity per feature is created in the model. Each
Feature entity is further decomposed into Task entities representing ordered tasks
necessary to develop the feature. Examples of subsequent task types are design,
implementation, and test (denoted as T1, T2, and T3 respectively). The estimated
volume (effort required) for each of the tasks per feature are stored in the model
database and corresponding entities are initialized accordingly.

250 A. Al-Emran, D. Pfahl, and G. Ruhe

• Initial # Devs: The number of developers available when development starts. One
Developer entity per developer is created in the model. Per developer productivity
values for each task type are kept in the model database and corresponding entities
are initialized accordingly. Productivity represents the amount of work done per
time unit. For example, if the productivity of developer Dk is y and the work vol-
ume of task Tj for feature Fi is x person-weeks (PW), then Dk can perform Tj of Fi
in x/y weeks. Productivity 0 for a task type implies that a developer is not able to
perform that type of task.

• Task Dependency: Specifies the dependency between subsequent tasks in terms of
percentage of task-related effort that has to be consumed before a subsequent task
can begin. If Task Dependency is 100, then Tj (e.g., test task) of a feature Fi can
start only if Tj-1 (e.g., implementation task) of Fi is 100% complete; if it is 50, at
least 50% of the preceding task needs to be completed to start the next task of the
same feature. No Task Dependency applies to the very first task, T1 (e.g., design
task), since it does not have any predecessor task.

An important model variable is Threshold Productivity, a vector of productivity
threshold values used to restrict the availability of developers per task type. For ex-
ample, if the model has design, implementation, and test tasks, the vector has three
cells. For a specific type of task, if a developer does not possess a productivity value
higher than that of the corresponding Threshold Productivity variable, then that de-
veloper will not be allowed to carry out that type of task. DynaReP uses an optimizer
construct (offered by the simulation modeling tool EXTENDTM) that automatically
assigns a value to each of these Threshold Productivity variables such that the overall
duration of a calculated release plan becomes minimal. Note that values for these
variables are re-assigned at each time a change is made in the planning parameters.

Independent from the value the model parameter Task Dependency, DynaReP
maintains a model constraint Task Precedence Relation: this is a start-start and end-
end relation between two subsequent task types Tj-1 and Tj, such that a task of type Tj
cannot start before a task of type Tj-1 has started, and a task of type Tj cannot end
before a task of type Tj-1 has been completed.

The following model controllers are used in DynaReP to allow its users to specify
the changes to be performed for re-planning:

• Include Feats: used to indicate a specific feature to be included in the release.
• Exclude Feats: used to indicate a specific feature to be excluded from the release.
• Include Devs: used to indicate a specific developer who joins the developer team.
• Exclude Devs: used to indicate a specific developer who becomes unavailable.
• Re-join Devs: used to indicate re-joining of a previously excluded developer.
• Change Effort: used to adjust under/over-estimated work volume (effort) of a spe-

cific feature-task combination.
• Change Prod: used to adjust over/under-estimated productivities for a specific

developer-task combination.
• Change Times: used to indicate the time from when a new change will be effective.

This also allows DynaReP to keep values of all Threshold Productivity variables
determined at different time.

 DynaReP: A Discrete Event Simulation Model for Re-planning of Software Releases 251

There exists another important model controller - PTimeout: a periodical time interval
when a Timeout Signal will be sent to enforce releasing blocked Task and Developer
entities (see section 3.3 for more details).

3.3 Model Structure and Description

DynaReP consists of ten high-level blocks, each of which is can be further decom-
posed. Figure 1 shows how these blocks are connected to each other with two types of
connections: (i) Entity Link, and (ii) Information Link. Entity links are paths through
which entities are routed from one block to another. Information links allows data
passing among the blocks. Since DynaReP assigns developers to perform different
tasks to realize each feature, there exist three types of entities in DynaReP: (1) Fea-
ture/Task, (2) Developer, and (3) Coupled (when the other two entities merged to
form one entity representing a task is assigned to a developer).

Fig. 1. High level view of DynaReP model structure

The description of the top level blocks can be summarized as follows:

• Database: Holds input information about features and their related task-specific
effort estimates, developers and their task-specific productivity; it also stores out-
put information, i.e., which developer is assigned to which feature/task-pair, when
task started, and how long tasks were executed.

Developer
Initializer

Feature/Task
Initializer

Developer
Pool

Developer
Blocking Zone

Task
Blocking Zone

Task-Developer

Allocator

Development

Phases

Database

PA
R

A
M

E
T

E
R

S
 &

 C
O

N
T

R
O

L
L

E
R

S

Processed Tasks

Coupled Entity Link

Information Link

Task
Queue

B

A

A

B

Connector
Task Entity Link

Developer Entity Link

252 A. Al-Emran, D. Pfahl, and G. Ruhe

• Feature/Task Initializer: Creates Feature entities for each of the features, breaks
each of them down into associated Task entities, initializes them with their respec-
tive information from Database, and sends them to Task Queue block.

• Task Queue: Holds incomplete Task entities, releases task entities that belong to an
incomplete feature with the highest work volume, and sends them to Task-
Developer Allocator block.

• Task Blocking Zone: Receives Coupled entities from Task-Developer Allocator
whenever a task does not meet either of Task Precedence Relation and Task De-
pendency; decuples Coupled entities, sends Developer entities immediately to
Developer Pool, and keeps Task entities until next Timeout Signal (c.f., section
3.2) to let other tasks in the queue to be considered.

• Developer Initializer: Creates Developer entities, initializes them with their respec-
tive information from Database, and sends them to Task Queue block.

• Developer Pool: Holds Developer entities, releases developers that possess the
highest productivity value for the type of task that has currently arrived at Task-
Developer Allocator, and sends them to Task-Developer Allocator.

• Developer Blocking Zone: Receives Coupled entities from Task-Developer Alloca-
tor whenever a developer does not possess productivity higher than the
corresponding threshold value; decuples Coupled entities, sends Task entities im-
mediately to Task Queue, and keeps Developer entities until next Timeout Signal
(c.f., section 3.2) to let other developer in the pool to be considered.

• Task-Developer Allocator: Combines received Developer entities with previously
received Task entities to simulate the assignments of developers to feature/task-
pairs, checks whether their combination meets all necessary conditions, and
depending on that sends the Coupled entity to either Development Phases (if condi-
tions are satisfied) or to one of Task Blocking Zone and Developer Blocking Zone
(depending on type of condition failed). Sending Coupled entities to Development
Phases also causes a Timeout Signal (c.f., section 3.2) to generate.

• Development Phases: Simulates the real-world behavior of developers working on
tasks by holding Coupled entities for some calculated simulation time. After com-
pleting a task, Coupled entity is decoupled to form separate Task and Developer enti-
ties. The Developer entity is sent back to the Developer Pool and the Task entity is
taken out of the simulation model (shown as Processed Tasks in Figure 1) since the
task is being processed. At last, a Timeout Signal (c.f., section 3.2) is generated.

• Parameters & Controllers: Defines and manipulates all model parameters and
controllers (c.f., section 3.2).

4 Hypothetical Case Study Example for Re-planning Scenarios

In this section, we illustrate some of the re-planning capabilities of DynaReP (cf.,
section 3.1) in order to demonstrate the applicability and usefulness of DynaReP for
re-planning of software releases. For that we chose a case example representing a
hypothetical software release development situation with the following properties:

• Features to be implemented in the release: F1, F2, …, F8
• Tasks to be carried out to create each feature: T1, T2, and T3 (e.g., design task,

implementation task, and test task, respectively)

 DynaReP: A Discrete Event Simulation Model for Re-planning of Software Releases 253

• Developers available to work on each feature-specific tasks: D1, D2, …, D6
• The estimated work volume (in PW) for each feature-specific task (cf. Table 1)
• The assumed productivity of each developer for each task type (cf. Table 2)

Table 1. Features and their estimated task work volumes (effort in person-weeks)

Task Type
Feature

T1: Design T2: Implementation T3: Test
F1 3 6 6
F2 8 3 2
F3 6 10 5
F4 3 3 6
F5 5 6 4
F6 7 5 3
F7 10 5 6
F8 6 8 10

Table 2. Developers and their productivities for different task types (dimensionless)

Task Type
 Developer

T1: Design T2: Implementation T3: Test
D1 1.5 2 1
D2 1 1.5 2
D3 2 1 0
D4 0 2 1.5
D5 0.5 1.5 2
D6 2 1 1

4.1 Baseline Scenario: Initial Planning

To be able to demonstrate the re-planning capability of DynaReP, we need to generate
an initial plan (cf. phase ii) that assigns developers to feature/task-pairs contained in a
release. This allocation is done based on the DynaReP heuristic (c.f., section 3.2). As
a result, we receive a complete schedule that tells us when, by whom, and for how
long each feature-specific task will be conducted. In our case example, the initial plan
generated by DynaReP requires 15 weeks to complete the release. The initial plan is
the base for the re-planning scenarios shown in the next subsections. As soon as an
unexpected situation occurs (e.g., a new feature needs to be included and realized in a
release), the initial plan needs to be altered in order to accommodate the change.

4.2 Re-planning Scenario 1: Feature Inclusion

Request for including a completely new feature that was not planned to be included
within a release is a very common situation.

For our case example, we assume that the development organization started work-
ing according to the initial plan from the beginning of the release development. After
three weeks, a new feature F9 is enforced by the customer to be included and imple-
mented. We also assume that the estimated work volume for each of the tasks of F9 is

254 A. Al-Emran, D. Pfahl, and G. Ruhe

8 person-weeks (PW). Now, after specifying this situation through model controllers
Include Feats and Change Times (c.f., section 3.2), DynaReP can produce an altered
plan as shown in Figure 2. The revised plan contains the same schedule as the initial
plan (shaded portion of Figure 2) up to the 3rd week. From the beginning of the 4th
week, a new developer allocation takes place and costs an additional 1.5 weeks (i.e., a
total duration of 16.5 weeks) to complete the release.

Fig. 2. A new feature F9 is included in the release under development

4.3 Re-planning Scenario 2: Underestimated Work Volume

Another very common scenario in industry is the underestimation of work volume
(effort). If this occurs, it can easily happen that a developer cannot finish a task
within an expected time period and the duration allocated for the task needs to be
extended. Because of this extension, later tasks that were supposed to be handled by
the same developer need to be adjusted as well resulting in another re-planning
scenario.

 For our case example, we assume that developers D1 and D2 could not finish tasks
T2 and T3, respectively, of feature F3 within 5 weeks as planned. Both developers
need one more week to complete their corresponding tasks. Since both of the devel-
opers possess a productivity of 2 for tasks types T2 and T3, respectively, the work
volume for the tasks T2 of F3 and T3 of F3 need to be increased by 2 PW (effort =
calendar time x productivity). Figure 3 shows the new plan resulting from this change
(altering the plan of Figure 2 from the 5th week on). The effort values for T2 and T3
of F3 are updated to 12 PW from 10 PW and 7 PW from 5 PW, respectively. This is
done by using model controllers Change Effort and Change Times (c.f., section 3.2).
Note that in this re-planning scenario the altered plan indicates that no additional time
is required to complete the release development.

 DynaReP: A Discrete Event Simulation Model for Re-planning of Software Releases 255

Fig. 3. Work volumes of tasks T2 & T3 of F3 were underestimated

4.4 Re-planning Scenario 3: Developer Unavailability

Unavailability of developers in a short notice is one of the most difficult problems to
resolve. Possible reasons for developer unavailability are sickness, transfer (to another
project), or simply leave away. In order to handle such situation, a re-allocation of
developers (i.e., re-planning) is required to fill-up the gaps in the schedule induced by
the unavailable developer. This re-allocation can be done either using the existing
human resources (that may cause longer development time) or including (e.g., trans-
ferring, hiring) developers into the development team.

Fig. 4. Developer D4 has become unavailable from the beginning of 10th week

256 A. Al-Emran, D. Pfahl, and G. Ruhe

Figure 4 shows how DynaReP re-allocates the remaining developers to complete
the release within 17.5 weeks, if developer D4 becomes unavailable starting from the
beginning of the 10th week. Note that DynaReP properly handles the issue that devel-
oper D4 had not completed task T2 of F1 when forced to leave. Again, only two con-
trollers, Exclude Devs and Change Times, are required to specify this change.

5 Discussion

In this section, first, we discuss the quality of release plans generated by DynaReP.
OPTIMIZERASORP [NgR06] is the closest work to the research presented in this paper. It
provides allocation of resources in the context of software release planning with a guar-
anteed degree of optimality. Therefore, we have chosen OPTIMIZERASORP as our
benchmark method for evaluating DynaReP’s planning quality. Since differences exist
among their assumptions and objectives, necessary arrangements (not presented here
due to space limitations) were made so that planning solutions can be compared fairly.

In order to conduct the quality evaluation of DynaReP, five release planning input
data sets were selected. Table 3 shows the summary of the evaluation. Columns four
and five show for each of the five input data sets the release development durations
estimated by OPTIMIZERASORP and DynaReP, respectively. The schedule times gen-
erated by DynaReP are 5% to 10% longer than the schedule time generated by
OPTIMIZERASORP.

Table 3. Performance Comparison: OPTIMIZERASORP vs. DynaReP

Cases
Number
of Fea-
tures

Number of
developers

Development Time
taken by

OPTIMIZERASORP

[weeks]

Development Time
taken by DynaReP

[weeks]

Performance
Differences

1 34 9 22 24 9%
2 37 12 18 19 6%
3 45 18 13 14 8%
4 47 16 15 16 7%
5 65 12 27 29 7%

This difference may be considered acceptable in the sense that accommodating
changes and performing re-planning with DynaReP is quick and easy. This statement
can be supported by (i) the re-planning scenarios presented in Section 4 where we
observed that only two model controllers needed to be accessed per change in plan-
ning parameters, and (ii) the simulation time needed by DynaReP to generate opera-
tional plans (in these five cases, they are in the range of 1-3 minutes).

Thus, there exists a trade-off situation when deciding whether to choose
OPTIMIZERASORP or DynaReP. While OPTIMIZERASORP can offer a guaranteed de-
gree of optimal resource allocation, it does not easily support re-planning. On the
other hand, re-planning can be achieved almost instantly by DynaReP, however at the
cost of 5-10% longer schedules. Thus, if plan quality is very important and the need
for re-planning is low then OPTIMIZERASORP should be chosen. If re-planning is fre-
quent, then DynaReP is the better choice.

 DynaReP: A Discrete Event Simulation Model for Re-planning of Software Releases 257

This is to be noted that the case example presented in section 4 was kept small in
order to demonstrate a variety of model capabilities in a limited space. However, the
performance comparison data in table 3 signifies that the model can be used for even
larger release plans and this clarifies its applicability in a real-world situation. Other
validity questions are related to different estimates. For example, the productivity and
effort estimates used in the case example are hypothetical. This encourages the pro-
posed approach to be validated in an industrial environment.

Besides the fact that DynaReP cannot guarantee the generation of optimal plans
there exist some other minor limitations. DynaReP generates operational plans with
developers working on a single task at a time and vice versa. This makes DynaReP,
for example, not applicable to projects that apply pair-programming. A work-around
for this limitation is to split developers into several “virtual developers” whose pro-
ductivity adds up to the original productivity of the split developer. A similar strategy
can be applied to features. Finally, the current version of DynaReP does not provide a
sophisticated user interface for users unfamiliar with the simulation tool EXTENDTM.

6 Conclusions and Future Work

In this paper, we presented the design and evaluation of the discrete-event simulation
prototype DynaReP, which provides decision-support for operational release planning
and re-planning. Its importance, effectiveness and efficiency were demonstrated via a
series of typical re-planning scenarios. We have shown that the DynaReP model is
able to accommodate a great variety of re-planning scenarios being of great practical
interest. The model is appropriate for a frequent change request environment, since it
can accommodate changes and perform re-planning both quickly and easily. For plan-
ning, the results have been shown to be almost as good as the results from applying
specialized optimization algorithms. Moreover, the model can handle a realistic con-
straint “task dependency” which is not considered by any other methods or models
proposed in the context of software release planning.

Future work will focus on (i) enhancing the model heuristic in order to improve ef-
fectiveness; (ii) including feature dependency constraints that specify whether a fea-
ture must be realized before another feature; (iii) improving model usability (e.g., data
input via GUI, connection to external database, etc.); and (iv) validating the proposed
approach in an industrial environment. In addition, we plan to study both planning
and re-planning also for stochastic variables expressing effort of feature/task-pairs
and/or productivity of developers. We again expect stronger modeling capabilities
from using simulation when compared to optimization.

References

[ARM06] Albourae, T., Ruhe, G., Moussavi, M.: Lightweight Replanning of Software Product
Releases. Proceedings of International Workshop on Software Product Management,
Minneapolis/St. Paul, Minnesota, USA (2006)

[HRD01] Höst, M., Regnell, B., Dag, J., Nedstam, J., Nyberg, C.: Exploring Bottlenecks in
Market-Driven Requirements Management Processes with Discrete Event Simula-
tion. Journal of Systems and Software, Vol. 59, No. 3 (2001) 323-332

258 A. Al-Emran, D. Pfahl, and G. Ruhe

[NgR06] Ngo-The, A., Ruhe, G.: Optimized Resource Allocation for Incremental Software
Development. TR 062/2006, Laboratory for Software Engineering Decision Sup-
port, University of Calgary (2006)

[Mom04] Momoh, J.: Applying Intelligent Decision Support to Determine Operational Feasi-
bility of Strategic Software Release Planning. Masters thesis, Department of Electri-
cal and Computer Engineering, University of Calgary, Canada (2004)

[PAR06] Pfahl, D., Al-Emran, A., Ruhe, G.: Simulation-Based Stability Analysis for Soft-
ware Release Plans. In: Wang, Q. et al. (eds.): SPW/ProSim 2006 - Proceedings.
LNCS 3966, Berlin-Heidelberg: Springer-Verlag (2006) 262-273

[Pen02] Penny, D.A.: An Estimation-Based Management Framework for Enhancive Mainte-
nance in Commercial Software Products. Proceedings of International Conference
on Software Maintenance (2002) 122-130

[RuN04] Ruhe, G., Ngo-The, A.: Hybrid Intelligence in Software Release Planning. Interna-
tional Journal of Hybrid Intelligent Systems, Vol. 1, No. 2 (2004) 99-110

[RuS05] Ruhe, G., Saliu, O.: The Art and Science of Software Release Planning. IEEE Soft-
ware, Vol. 22, No. 6 (2005) 47-53

[SSA96] Stark, G., Skillicorn, A., and Ameele, R.: An Examination of the Effects of Re-
quirements Changes on Software Maintenance Releases, Journal of Software Main-
tenance: Research and Practice, Vol. 11 (1999) 293-309

The Economic Impact of

Software Process Variations�

Florian Deissenboeck and Markus Pizka

Institut für Informatik, Technische Universität München
Boltzmannstr. 3, D-85748 Garching b. München, Germany

{deissenb,pizka}@in.tum.de

Abstract. The economic benefit of a certain development process or
particular activity is usually unknown and indeed hard to predict. How-
ever, the cost-effectiveness of process improvements is of paramount im-
portance and the question how profitable certain activities are needs to
be answered. Within a large-scale commercial organization, we were chal-
langed with the task to quantify the economic benefit of isolated test and
development environments. To answer this question we defined a generic
process model based on absorbing Markov chains that allows to analyze
the economic benefit of software process variations. This model exposes
conflicts between process steps and reiterations of development activities
and thereby provides a highly flexible tool for the investigation of the
effects of changes to a development process on its overall performance.
This model was used to predict the impact of isolated testing on the
overall effort and duration of projects at BMW. The results obtained
correspond well with the perception of experienced developers and gives
a detailed explanation for the effects. Besides this, it can be used to an-
alyze various other economic aspects of software development processes
and yields an interesting alternative for cost estimation.

Keywords: Software Process Economics, Process Simulation, Industrial
Application, Absorbing Markov Chains.

1 Software Process Economics

How does one determine the economic impact of selecting a certain process
model? Is XP cheaper than RUP? What are the risks of the waterfall model?
Does the spiral model actually yield faster time-to-system? All of these questions
are of practical relevance, highly important but very difficult to answer. Surely,
in a specific situation we assume that alternative A is faster (cheaper, better,
. . .) than B based on our invidual experience but the benefit can neither be
quantified nor guaranteed.

In contrast to this, the costs of activities are usually clear and precisely doc-
umented in bills. For example, it is unclear how much money can be saved in

� Part of this work was sponsored by the BMW Group.

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 259–271, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

260 F. Deissenboeck and M. Pizka

a given project setting by spending one additional dollar on model-based devel-
opment techniques. The same applies for well-established activities like docu-
mentation as well as for more specialized methods like requirements engineering
with formal methods.

1.1 The Value of Isolated Testing

Within a large scale industrial organization, we were challenged with the task to
determine how much time and effort is saved by using isolated test and develop-
ment environments for IBM mainframe (i. e. PL/I, COBOL) based commercial
software projects.

While isolated testing is rather straight forward for UNIX and Microsoft Win-
dows based software projects it is non-standard for mainframe applications since
all projects share the same machine with the same infrastructure without hav-
ing private copies of libraries, databases and so on. To achieve some kind of
isloation most IT organizations that develop and maintain mainframe applica-
tions create some kind of software solution that enables them to develop and
test multiple projects simultaneously in separated environments on a single
mainframe.

The costs of this solution are usually easy to determine by adding space,
CPU time, software licenses and support personnel. However, although it can
be argued in a qualitative manner that separate testing and avoiding conflicts
is useful, it is hard to quantify the benefit. In practice this makes it very hard
to argue in favor (or against) such measures and consequently leads to decisions
that lack an economically justified basis.

1.2 Approach, Contribution and Outline

Starting from our project partner’s concrete questions about the economic ben-
efit of process variations, we formulated a precise research question (Sec. 2) and
investigated different approaches to answer it.

Due to a number of reasons (detailed in Sec. 6) we found that an empirical
study could not satisfactorily answer this question and therefore developed new
concepts to evaluate the economic effect of decisions regarding process variations
(Sec. 2). These concepts are based on a probabilistic process model that uses
absorbing Markov chains for the process simulation. This model advances ex-
isting process models as it renders project risks explicit and precisely describes
reiterations of activities (Sec. 3). This model can be used to derive quantitative
information on the cost and benefit of specific process activities.

We illustrate this with a study carried out for the BMW Group to deter-
mine the economic benefit of isolated test and development environments on
mainframes (Sec. 4 and 5). We explain how our approach extends previous work
(Sec. 6) and illustrate how the scope of application of the analytical model can
be further broadened (Sec. 7).

The Economic Impact of Software Process Variations 261

2 Requirements / Situation

The object of investigation of our study was the development and test processes
used by BMW Group’s mainframe software development division. At BMW, sev-
eral 100 software engineers develop and maintain critical business information
systems with a total of 85 millions lines of PL/I and COBOL code. The divi-
sion uses two separated IBM zSeries mainframes for development and operation,
whereas our study focused exclusively on the development mainframe.

2.1 Mainframe Software Development

Unlike the more common workstation-based development environments, main-
frames do in general not provide developers with isolated environments where
they can edit, compile, link and test the code they are working on without in-
terfering with other projects. In fact, if no additional measures are taken, all
developers share the same development environment and all test data.

Due to the frequent separation of development and operation spaces of typical
mainframe installation this does not pose any problems for the operation of the
software, but creates servere problems for the concurrent development and test
of multiple projects. Conflicts between projects can occur during almost all ac-
tivities (e. g. compile, link, test) and affect almost all development artifacts (e. g.
source code, libraries, test data). These conflicts are not only frustrating and
time-consuming for the developers, but make sound testing almost impossible
as test results can not be interpreted properly. For example, if a test case fails,
it is not decidable whether it failed because of a bug or because another project
changed the test data in the shared data base.

Unfortunately, isolated test spaces cannot be established for mainframes as
easily as in ordinary workstation-based environments where every developer can
have his own test space on an own workstation.

2.2 The CAP Isolation Mechanism

The BMW Group developed a software-based isolation technique on top of the
virtualization mechanism provided by the mainframe.1 This technique offers
projects isolated test and development environments called Caps (capsules).
These Caps contain a complete copy of the required development environment
including compilers, linkers, job control, and test databases. They thereby en-
able projects to develop and test in an independent, conflict-free manner until
they reach a certain degree of maturity and can be integrated in the main de-
velopment trunk in a special integration test phase. Caps have the additional
advantage of making it easy to reset the complete development environment of
a project to a specific state.

These advantages, however, come at a price as the initialization, operation
and support of a Cap is a non-trivial task that demands significant hardware
resources as well as expenses for dedicated personnel.
1 IBM zSeries mainframes provide a coarse-grained virtualization mechanism.

262 F. Deissenboeck and M. Pizka

2.3 Research Question

The qualitative benefit of a Cap can be explained quite easily by explaining how
non-isolated development environments create expensive conflicts and contribute
to poor product quality due to unreliable test results. It is, however, very hard
to compare these qualitative benefits to the known quantitative costs of the Cap
mechanism. Therefore the research question of the study we conducted was:

What is the economic benefit of using a Cap for a software project?

Note, that although this initial questions focuses on project effort, our study also
analyzed the project duration to characterize the crucial time-to-system aspect.
However, we cannot report on this in detail due to space constraints.

3 A Probabilistic Process Analysis Model

As explained in Sec. 6, we are convinced that is not feasible to answer the
above questions on a quantitative scale by carrying out an empirical study. We
therefore opted for an analytical model that abstracts from the problem under
investigation and allows us to focus on the impact of Caps on development effort
and time.

This model was inspired by an observation of the analogy between software
development processes and concurrent systems theory [1]. Development activ-
ities are similar to tasks executed by an operating system. In a development
process the resources are not memory and file handles but source code, libraries
and test data. Similar to the conflict that arises from a write access to the same
memory address in a parallel system, a concurrent change to a program by two
different projects produces a conflict in the software development process.

3.1 Probabilities and Risks

These considerations lead to a probabilistic process model that describes a de-
velopment process as a system of concurrently executing tasks. The tasks of the
system are the activities of the software process and the processors are humans
(developers) executing these activities. Due to the goal of the overall process
and limited resources, there are constraints on the order of the activities en-
tailing the need for coordination. The transitions from one activity to possible
succeeding activities are labeled with probabilities. Through this, there may also
be loops in the parallel deterministic automaton describing costly rework in the
development process due to failure or incompleteness at a certain stage of the
process. The activities and the frequency of there execution define the cost and
the duration of the project.

Fig. 1a shows a model of a simplified software process with the typical ac-
tivities and transitions between them. Unlike other process models this model
explicitly describes the loops (cycles) realistically found in software projects.
This enables us to e. g. model the alternation between the activities Implemen-
tation and Unit Test that takes place in practice: Developers write some code,

The Economic Impact of Software Process Variations 263

Fig. 1. Example Processes

test it (either manually or automatically) and then go back to implementing
more code and/or fix existing code. They do so until they are eventually done
with the implementation and all their tests pass. In addition to that, loops allow
us to explicitly capture prevalent project risks that are often ignored [2]; e. g.
an unlikely, but still possible, transition from the Integration Test to the Spec-
ification could be easily added to the process model. Note that the sum of the
probabilities of the outgoing transitions of an activity must always be one.

Fig. 1b illustrates how resource conflicts during specific activities can be ele-
gantly expressed through additional conflict-specific activities and adjusting the
transition probabilities accordingly. For example, a conflict with another project
during the Integration Test does not only reduce the probability that the project
can proceed with the activity Rollout but requires the execution of the additional
activity Conflict Resolution.

3.2 Operationalization of the Model

While this model provides an interesting abstraction of a software development
process, it is does not answer the question about the benefits stated above,
yet. Fortunately stochastics can help here as the process model can be viewed
as a stochastic process or, more precisely, as a discrete Markov chain with an
absorbing state.

A Markov chain is defined as a stochastic process with a set of states S =
{s1, s2, . . . , sr}. The process starts in one of these states and moves stepwise
from state to state. If the chain is in state si, then it moves to state sj at the
next step with a probability denoted by pij . This probability does not depend
on the state history of the chain [3].

Markov chains are typicalyl represented as directed graphs very similar to the
ones in Fig. 1 or as a transition matrix P that denotes the transition probabilities
for every state. Working with this matrix, Markov chain theory provides powerful
methods to compute a number of interesting properties of the chains. It is, for
example, easy to calculate in which state the chain is expected to be after n
steps when started in state si, or to determine the probability for moving from
state sj to state sl in k steps.

264 F. Deissenboeck and M. Pizka

When modeling a software process there must be an activity that does not
have any transitions to other activities and thereby marks the end of the process
(Rollout in Fig. 1). Translated to a Markov chain model this is equivalent to
a terminal state si that has exactly one outgoing transition to itself with the
probability pii = 1, Such a state is called an absorbing state and Markov chains
with an absorbing state are called absorbing Markov chains [3].

Absorbing Markov chains are a powerful tool for analyzing processes as they
provide well defined methods to determine

– the expected total number of steps until the chain reaches an absorbing state
as well as

– to calculate the expected number of steps spent in each state.

Without going into the mathematical details we illustrate this for the process
shown in Fig. 1a.

For the sample probabilities α = 0.95 and β = 0.2 the absorbing Markov chain
analysis yields the following expected number of visits to each state (start state
Specification): Specification is expected to be carried out only once, Design and
Integration Test are expected to be performed 1.25 times, and Implementation
and Unit Test 25 times. The total number of steps before the chain reaches the
absorbing state Rollout is given by the sum which is 53.5.

Figure 2 shows how different values for the probabilities α and β influence the
expected total number of steps in the example process. While values close to 1
lead to an infinite number of steps in both cases, one can see that increasing β
raises the number of steps stronger than increasing α as this transition occurs
later in the process.

Fig. 2. Transition Probability vs Expected Total Number of Steps

3.3 Total Project Effort and Duration

The expected total number of steps represents a measure for project progress,
but it still does not yet fully answer the questions about the total project effort
and duration. To achieve this each process activity a is now associated with
the average effort eff(a) and time time(a) needed for a single execution of the
activity. The total effort and duration of a project is given by:

The Economic Impact of Software Process Variations 265

efft =
∑

a∈A

eff(a) · steps(a) timet =
∑

a∈A

time(a) · steps(a)

where A is the set of all activities and steps(a) is the expected number of visits
to activity a. Note that eff(a) and time(a) dependend on the project size.

4 Application of the Analysis Model to Isolated Testing

To apply our approach to analyze the economic benefit of isolated test and
development at BMW, three fundamental pieces of information are needed:

1. transition probabilities
2. effort needed to execute for each activity
3. time needed to execution for each activity

As it is not realistic to correctly determine this information without investing
considering empirical studies, we analyzed the two process variations (Cap and
Non-Cap) in a relative manner. We therefore designed a reference process, cali-
brated it with existing empirical data and parameterized it with the probability
for conflicts during development and test. Based on this reference process we
designed the process models for Cap and Non-Cap development and compared
them using the method presented above. This comparative approach allowed us
to abstract from concrete values for the transition probabilities as well as the
efforts and times needed for each activity.

4.1 Reference Process

Based on existing process descriptions and interviews with project managers as
well as developers, we created the reference process model with 13 activities and
18 transitions (not presented here in its entirety due to confidentiality reasons).
This model does not contain special isolation-related activities and therefore
consists of the usual specification, design, implementation and test activities.
It does, however, carefully distinguish between module tests and two levels of
integration tests and contains explicit error analysis activities.

Eleven of the 18 transition of the model have a transition probability unequal
one. Using existing process analysis data as well as interviews we estimated the
probabilities and ensured that the remaining impreciseness does not bias our
study results (see Sec. 5).

4.2 Calibration

To determine the effort needed for each execution of the activities, we calibrated
the reference process with data from well-known empirical studies.

For example, the Markov chain analysis showed that the activity Implemen-
tation will be carried out 95.24 times and thereby accounts for 36.78% of the
expected total 258.95 process steps. As [4] and other sources point out that im-
plementation usually accounts for ≈ 20% of the total development effort, we
concluded that the relative effort of each execution of Implementation activity
in our process is 0.21%. These relative measures of effort were later on used to
compare the different processes.

266 F. Deissenboeck and M. Pizka

4.3 Parameterization

Obviously the difference between the Cap and Non-Cap development processes
is determined by the number of conflicts with other projects that arise during
the different activities. We expressed this by introducing the conflict probability
parameter c and parameterized the process models accordingly. Figure 3 ex-
emplifies this for the Integration Test and shows how the conflict parameter c
influences the transition probabilities.

Fig. 3. Process Parameterization

4.4 CAP and Non-CAP Process Models

Based on the previously defined reference process we built specific models for
Cap and Non-Cap development. The models differ as the Cap model con-
tains specific Cap-related activities, e. g. CAP Refresh and the Non-Cap model
explicitly describes conflict resolution activities (Fig. 4).

Fig. 4. Differences between CAP and Non-CAP Process (Module Test)

Please note that the Cap process, though isolated, is not fully free of conflicts
as conflicts may arise during the Integration Test when the project leaves its Cap.

4.5 Relative Project Effort

For both processes the Markov chain analysis was carried out for different conflict
probabilities and the total effort was put into relation with the same calculation
for the reference process. Figure 5 shows the results in two resolutions. On the

The Economic Impact of Software Process Variations 267

Fig. 5. Conflict Probability vs Relative Effort

left, the total effort for all three processes is shown for the conflict parameter
interval [0; 0.6]. One can easily see that the efforts for the reference and Cap
process behave in a similar way whereas the effort for the Non-Cap process
increases much stronger. However, the right side with its finer resolution (interval
[0; 0.2]) shows that for very low conflict probabilities the effort for the Cap
process exceeds the effort for the Non-Cap process.

The results can be explained by analyzing the frequencies of each activity in
the three process models. In the Cap and reference process an increasing conflict
probability raises only the frequency of the integration test that is performed
when the project leaves the Cap. In the Non-Cap process, however, the conflict
probability also affects the module test. As the test activities constitute nested
loops in the process this leads to a much stronger increase of the overall effort. It
is also obvious that the Cap process has higher costs than the Non-Cap process
for very small conflict probabilities as the cost for creating and maintaining the
Caps occurs independent of the conflict probability. This meets the expectation
that Caps are obsolete if there are no conflicts.

4.6 Estimation of the Conflict Probability

As the results of the process analyses show, the final decision on the economic
efficiency of the Cap mechanism depends on the conflict probability parame-
ter c. To determine the conflict parameter we analyzed the average number of
dependencies among mainframe programs and examined the number of actual
changes of these programs by using the configuration management system. The
latter is important as program-to-program dependencies do cause conflicts only
if both programs are modified at the same time.

For the analyzed period of one year we found that ≈ 55, 86 relevant (i. e. with
possible conflict) changes occur for every program every year. Given a work
year of 200 days this resolves to 0.279 relevant changes a day. As the reference
process predicts about 100 test activities in a year this finally leads to a conflict
probability of 0.279/2 = 0.1395 or 14%.

Note that this does only regard program but not data dependencies. For data,
the conflict probability is obviously dramatically higher.

268 F. Deissenboeck and M. Pizka

5 Results and Discussion

The process analysis and the estimation of the conflict probability leads to the
following conclusion:

Projects with an average number of dependencies save about 20% of total
effort through using the Cap isolation mechanism as they avoid addi-
tional process cycles and conflict resolution activities.

We therefore recommended to use non-isolated development only for projects
with no or very few dependencies. Although we do not have a formal exter-
nal validation of our results we can say that our results fully correspond with
our project partners’ experiences. In addition to this this recommendation was
already followed before this study was conducted, as project managers intu-
itively chose isolated development only for projects with zero or few
dependencies.

Although it is not detailed here, the difference between Cap and Non-Cap is
even stronger with respect to time-to-system.

A new insight gained from this study regards the validity of test results if
projects perform tests on shared data. As this drastically increases the conflict
probability, enormous efforts are needed to ensure the validity of test results.

The major threats to the validity of these results is the determination of the
transition probabilities and the memoryless nature of Markov chains.

Transition Probabilities. To evaluate how strongly different transition probabili-
ties influence the results we performed a sensitivity analysis [5] to determine the
transition that has the highest influence on the result. Using the variance-based
Extended FAST Method [6] we found the transition Module Test → Integration
Test to be not only the most important but with an total order index of 0.72
about three times as important as the second ranked transition. We therefore fo-
cused our analysis on the most important transition probability and found that
changes to this probability do of course change the absolute efforts calculated
for each process model. They do, however, not change the relation between Cap
and Non-Cap development processes.

Memorylessness. The memorylessness of Markov chains implies that the tran-
sition probability from e. g. Module Test to Implementation Test and others is
always the same, no matter how often the activities have been carried out before.
As this might contradict one’s intuition, we evaluated the influence of memory-
lessness by introducing a process memory in form of a compound interest func-
tion for the activity efforts. By defining a negative interest rate (reduction rate)
we could simulate a situation where each execution of an activity demands less
effort than the previous execution. Repeating the analysis for the two process
models with this process memory showed again that the memory does influ-
ence the absolute results but not invalidate the relation between the Cap and
Non-Cap development processes.

The Economic Impact of Software Process Variations 269

6 Related Work

Numerous empirical studies were conducted to answer similar process-related re-
search questions, e. g. [7,8,9,10]. In general, empirical research generated highly
valuable data that also helped us in calibrating the reference process model.
However, empirical studies have a number of drawbacks that rendered them un-
suitable in our situation. As it is impossible to replicate the same development
project with two different processes (e. g. Cap vs Non-Cap) without changing
any other influencing parameter, an empirical study would have to be carried
out on similar projects. Due to the size and complexity of mainframe software
development projects it is very hard to control their similarity and to correctly
interpret the observations. As this could be overcome only by a significant num-
ber of repetitions of such studies, reliable results could be expected only after
investing enormous amounts of time and effort [11, 12, 13, 14].

Due to these reasons we chose to use an approach based on process simu-
lation. Similar approaches where presented as early as in the 1950ies with the
Critical Path Method (CPM) and PERT [15]. More recent approaches were pre-
sented (among others) by Drappa and Ludewig [16], Madachy [17], Podnar and
Mikac [18], Zhang et al. [19] and Mockus et al. [20]. While all of these approaches
served as highly valued inspirations, they are either of qualitative nature [19],
too specific to their original application [20], do not consider conflict probabili-
ties and project cycles [15, 16, 18] or were too fine-grained for our purpose [17].
Overviews on process simulation techniques can be found in [21] and [22].

Markov chain-based process simulation models were proposed earlier by Kulka-
rni and Adlakha [23], Hardie [2] as well as Minh and Bhaskar [24]. Kulkarni
and Adlakha focus on the project completion time of PERT networks and do
therefore analyze acyclic process models only. Hardie specifically includes cyclic
process models and concludes that the reluctance to model project cycles is
one of the main reasons for flawed predictions. However, he does not use ab-
sorbing Markov chains to calculate expected project efforts. Minh and Bhaskar
extend Hardie’s work by using absorbing Markov chains to determine the ex-
pected number of process steps but do not include analysis of project efforts.
To our knowledge, neither of the above authors applied their approaches in an
industrial context. Padberg [25] presented a model that is based on a Markov
decision model to evaluate scheduling strategies. This approach does not model
activities explicitly and could therefore not be used to determine the project
effort in our case.

7 Conclusions and Future Work

While it is usually easy to determine the costs of specific techniques or methods
applied in software development, it is almost always extremely hard to quantify
the economic benefit of such measures. As decisions for or against such measures
should be economically justified, this is a serious problem in today’s software
engineering practice.

270 F. Deissenboeck and M. Pizka

To answer the question about the economic benefit of isolated test and de-
velopment environments in mainframe software development we developed a
stochastic process simulation that explicitly describes project risks and activity
reiterations. We demonstrated how this model can be used to compare process
variations and found that isolated test environments typically save ≈ 20% de-
velopment effort in the setting analyzed.

We believe that the incorrect predictions for project time and cost frequently
encountered in practice are mainly due to project managers’ reluctance to ad-
dress project risks caused by unplanned reiterations of development activities.
Therefore our current and future work focuses on applications of the model in
the field of software project cost estimation. In this context we are working on
the completion of the tool-suite that allows process design and analysis based
on the methods presented in this paper.

References

1. Bacon, J.: Concurrent Systems: Operating Systems, Database and Distributed
Systems: An Integrated Approach. Addison-Wesley, Boston, MA, USA (1993)

2. Hardie, N.: The prediction and control of project duration: a recursive model.
International Journal of Project Management 19(7) (2001) 401–409

3. Grinstead, C.M., Snell, J.L.: Introduction to Probability. AMS (2003)
4. Boehm, B.W.: Software Engineering Economics. Prentice Hall PTR, Upper Saddle

River, NJ, USA (1981)
5. Saltelli, A., ed.: Sensitivity Analysis. John Wiley & Sons (2000)
6. Saltelli, A.: A quantitative model-independent method for global sensitivity anal-

ysis of model output. Technometrics 41(1) (1999) 39–56
7. Williams, L., Kessler, R., Cunningham, W., Jeffries, R.: Strengthening the case

for pair programming. Software 17(4) (2000) 19–25
8. Phongpaibul, M., Boehm, B.: An empirical comparison between pair development

and software inspection in Thailand. In: ISESE ’06, ACM Press (2006)
9. Dingsøyr, T., Røyrvik, E.: An empirical study of an informal knowledge repository

in a medium-sized software consulting company. In: ICSE ’03, IEEE CS (2003)
10. Du, G., McElroy, J., Ruhe, G.: A family of empirical studies to compare informal

and optimization-based planning of software releases. In: ISESE ’06, ACM Press
(2006)

11. Perry, D.E., Porter, A.A., Votta, L.G.: Empirical studies of software engineering:
a roadmap. In: ICSE ’00, ACM Press (2000)

12. Pfleeger, S.L.: Albert einstein and empirical software engineering. Computer
32(10) (1999) 32–38

13. Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El Emam, K.,
Rosenberg, J.: Preliminary guidelines for empirical research in software engineering.
IEEE Trans. Softw. Eng. 28(8) (2002) 721–734

14. Seaman, C.: Qualitative methods in empirical studies of software engineering.
IEEE Trans. Softw. Eng. 25(4) (1999) 557–572

15. Malcolm, D.G., Roseboom, J.H., Clark, C.E., Fazar, W.: Application of a technique
for research and development program evaluation. Operations Research 7(5) (1959)

16. Drappa, A., Ludewig, J.: Quantitative modeling for the interactive simulation of
software projects. The Journal of Systems and Software 46(2–3) (1999) 113–122

The Economic Impact of Software Process Variations 271

17. Madachy, R.J.: System dynamics modeling of an inspection-based process. In:
ICSE ’96, IEEE CS (1996)

18. Podnar, I., Mikac, B.: Software maintenance process analysis using discrete-event
simulation. In: CSMR ’01, Washington, DC, USA, IEEE CS (2001)

19. Zhang, H., Huo, M., Kitchenham, B., Jeffery, R.: Qualitative simulation model for
software engineering process. In: ASWEC ’06, IEEE CS (2006)

20. Mockus, A., Weiss, D.M., Zhang, P.: Understanding and predicting effort in soft-
ware projects. In: ICSE ’03, IEEE CS (2003)

21. Kellner, M.I., Madachy, R.J., Raffo, D.M.: Software process simulation modeling:
Why? what? how? Journal of Systems and Software 46(2-3) (April 1999) 91–105

22. Williams, T.: The contribution of mathematical modelling to the practice of project
management. IMA J Management Math 14(1) (2003) 3–30

23. Kulkarni, V.G., Adlakha, V.G.: Markov and markov-regenerative pert networks.
Operations Research 34(5) (1986) 769–781

24. Minh, D.L., Bhaskar, R.: Analyzing linear recursive projects as an absorbing chain.
Journal of Applied Mathematics and Decision Sciences (2006)

25. Padberg, F.: A comprehensive simulation study on optimal scheduling for software
projects. In: ProSim ’04, IEE (2004)

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 272–282, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Deriving a Valid Process Simulation from Real World
Experiences

Christoph Dickmann1, Harald Klein2, Thomas Birkhölzer3, Wolfgang Fietz1,
Jürgen Vaupel1, and Ludger Meyer2

1 Siemens Medical Solutions, Postfach 3260, 91050 Erlangen, Germany
{christoph.dickmann,wolfgang.fietz,juergen.vaupel}@siemens.com

2 Siemens CT SE 3, Otto-Hahn-Ring 6, 81730 München, Germany
{h.klein,ludger.meyer}@siemens.com

3 University of Applied Sciences Konstanz, Braunegger Str. 55, 78462 Konstanz, Germany
thomas.birkhoelzer@htwg-konstanz.de

Abstract. This paper presents a systematic approach to develop and configure a
process simulation model that relates process capabilities to business parame-
ters in order to support process improvement projects within Siemens. The re-
search work focuses on the systematic set up of a validated and acknowledged
model that matches the company’s process improvement needs by involving
experts to adapt an existing mathematical framework and simulation applica-
tion. The methodology consists of three complementary steps: An approved
conceptual model is used as structural skeleton, quantitative parameters are de-
rived by a prospective expert survey, and final adaptation and customization is
facilitated in order to be useable for process experts themselves (instead of
model developers).

Keywords: simulation; software process improvement; capability maturity
model; CMMI; balanced scorecards; validation; expert survey; process knowl-
edge; simulation model customization.

1 Introduction

Process improvement needs considerable investment and normally results in changes
to critical software development steps. Hence, it requires a solid justification from a
business management and software development viewpoint. Many development or-
ganizations, however, face the problem that process improvements are generally con-
sidered to be beneficial activities, although in most cases the prospective results and
alternatives are not estimated or compared on a systematic quantitative basis. Existing
reports of quantitative outcomes usually cover only one improvement scenario with-
out providing insights into alternatives [11].

Quantitative process simulation is considered a means to face this problem by de-
scribing and calculating a complex real world system in a simplified way in order to
enable process owners and management stakeholders to test different process
improvement approaches [2], [4], [5], [6].

 Deriving a Valid Process Simulation from Real World Experiences 273

However, most of the existing simulation approaches model software project per-
formance and evaluate improvement options by comparing project performance based
on different settings of the model, for a comprehensive overview see [2].

This work sets up a model on the abstraction level of the organization as a whole in
which model inputs represent CMMI-based process improvement actions and model
outputs represent business measures of the organization. The simulation model relates
capabilities of key process areas, e.g. assessed as CMMI levels [10], with business
outcomes measured by core metrics such as defined in a company’s Balanced Score-
card [1]. This approach is similar to [5] but is extended to a comprehensive scope.

Such an approach crucially depends on the trustworthiness of the underlying
model. Therefore, it was the objective of this research project to set up a validated and
credible process simulation model for Siemens by leveraging the existing knowledge
of process experts from different company units. The methodology consists of three
steps:

1) An approved conceptual model defining process areas, business metrics and
their relations is used as structural skeleton,

2) quantitative parameters are derived from a prospective expert survey in se-
lected and representative development organizations, and

3) a final adaptation and customization is facilitated in order to be useable for
process experts themselves (instead of model developers), thus enabling an
easier, more direct and therefore better customization.

The resulting simulation model consists of two sets of entities: process areas and
business metrics. The first set of entities is the basis for investments of the process
improvement budget, and is essentially based on the CMMI process areas combined
with special focus areas derived from the company’s business needs. Those process
areas are aggregated to a metrics level, which represents the second entity set. Metrics
entities are calculated by using weighted paths from process level to metrics level.
Those paths are quantitatively derived from the prospective expert survey mentioned
above. Results of the simulation are presented using the Balanced Scorecard (BSC)
methodology [1] grouped in the well-established four categories Process, Quality,
Customer and Financial. These metrics represent the level of achievement of the or-
ganization’s business goals, and, therefore, quantitatively indicate the benefit result-
ing from process improvement.

In section 2 we sketch the mathematical basis of this research work and a tool im-
plementation (for details see [7], [9], which also present simulation results). This
covers the mathematical concepts as well as the simulation implementation. Section 3
talks about the configuration approach, which is necessary for setting up a valid
model. Thereby the derivation of process areas and metrics from the business needs
are explained. Section 4 describes the customization approach and section 5 provides
a discussion of the achievements and open issues.

2 Background

In [7] and [9] a generic mathematical process simulation framework was evaluated
and presented, which is designed to simulate software development organization in
the context of process changes (i.e. process improvements).

274 C. Dickmann et al.

Time-discrete, nonlinear, first-order equations relate inputs () n
tntt uuu R∈= ,,1 ˆ,,ˆˆ K ,

normalized internal state variables () n
tntt xxx R∈= ,,1 ˆ,,ˆˆ K and normalized outputs

() m
tmtt yyy R∈= ,,1 ˆ,,ˆˆ K as follows:

itiitiiti sxx τλλ −+ ⋅+⋅−= ,,1,)ˆ(n)1(ˆ ; (1)

)ˆ(n),),ˆ(ng()ˆ(nˆ ,
)()(

,
)(

,
)(

,, ∑∑ ⋅⋅+⋅+⋅=
j

tj
x

ij
x

ijtl
x

ij
j

tj
x

ijtiiti xxxus
ij

μνγβα ; (2)

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

⋅⋅+⋅
=

∑ ∑

∑ ∑

j j

y
ij

y
ij

j j
tj

x
ij

x
ijtl

y
ijtj

y
ij

ti

xxx

y
ij

)()(

,
)()(

,
)(

,
)(

,

)ˆ(n),),ˆ(ng()ˆ(n

ˆ

γβ

μνγβ
 ; (3)

⎪
⎩

⎪
⎨

⎧

<
≤≤

>
=

0for0

10for

1for1

)(n

arg

argarg

arg

arg ; (4)

)(1

1
),,g(μνμν

−−+
=

arge
arg . (5)

The output variables tŷ are intended to represent business metrics. The internal

state variables tx̂ represent process area capabilities, e.g. assessed as CMMI levels

[10]. The inputs tû represent investments in process areas that change model states

and output values, correspondingly. These variables are determined by the structure of
the organization to be modelled, e.g. which metrics are used, see section 3.2. Tempo-
ral process dynamics and inter-process dependencies are represented mainly by equa-
tions (1) and (2) and defined by the parameters μνγβατλ ,,,,,, . Equation (3) is the

basis for calculating normalized outputs as weighted sums of model states, and (4)
and (5) are auxiliary functions for normalization and gating. The gating function as
specified by equation (5) is used to model that a certain capability level of one process
area is a prerequisite of the effects of another process area.

The framework described by equations (1) to (5) is similar to classical system dy-
namics by the use of continuous state variables and time based simulation. However,
time continuous differential equations are replaced by time discrete difference equa-
tions (1). The latter is a standard simulation technique in order to reduce implementa-
tion and computation complexity without loss of generality.

In [7] and [9] it was shown that this framework is able to produce interesting and
plausible simulation behavior in principle. However, to derive a valid model repre-
senting real world organization behavior within this framework the following steps
are necessary (see section 3 for details):

 Deriving a Valid Process Simulation from Real World Experiences 275

1. Identification of the real world set of internal states governing the organization.
2. Identification of the real world outputs indicating the organization’s production

and business.
3. Identification of the relations between states and outputs.
4. Quantification of the model parameters describing state dynamics (ii τλ ,), as well

as relational strengths ()()(,, ••
ijiji γβα) and characteristics ()()(, ••

ijij μν).

The mathematical framework defined by equations (1) - (5) is implemented in an
interactive, Java-based simulation application [4].

The user interface allows entering the input investments tu interactively at a simu-

lation step (representing a time period). Then, the simulation can proceed for a select-
able number of simulation steps and the effects of the investments onto the business
parameters are graphically displayed resembling score cards, see Fig. 1. Additional
reports for later analysis can be generated as well. A more detailed description and
simulation results can be found in [4], [7].

Fig. 1. Screenshot of the simulation application. The input area (investment in process areas to
be improved) is on the left side, the output score card (business metrics) display in the center.

3 Deriving a Validated Model for the Simulation

3.1 Methodology

The question of model validity and simulation validation has been an ongoing chal-
lenge for most of the software process simulation efforts [3]. Methodologically, the
simplest case is to prove congruence of the simulation results with real world
input-output-data.

276 C. Dickmann et al.

However, this type of validation is almost never achieved because of “lack of data”
from software development projects. Moreover, this “lack of data” is not due to the
shortcomings of the respective research effort (which might be overcome by a better
approach), but poses a principal methodological problem: software producing organi-
zations are time-varying and can not be experimentally tested for different scenarios.
Therefore, real world input-output-data is anecdotic in the best case, able to support or
discourage a simulation model, but will hardly suffice for strict validation.

On the other hand, most organizations have built up a substantial amount of proc-
ess knowledge and experience over time. Process areas, metrics and procedures might
have been originally derived from external sources like CMMI or RUP, but were also
tested, used and modified during the course of many projects and organizational evo-
lutions. In this paper, it is suggested and demonstrated, that a valid process simulation
model can be build upon this knowledge. This is done by two steps: The structure of
the simulation model is derived from an existing and approved conceptual process
model and the quantitative parameters are estimated by a prospective expert survey.

 As a final, not yet completed step, the overall behaviour will be assessed by a
retrospective expert appraisal.

3.2 Model Structure Based on Process Knowledge

At Siemens, there is a central software engineering group which supports other organ-
izational units with respect to software engineering methodology in general and proc-
ess improvements in particular.

Within this group, the resulting process knowledge has been condensed and solidi-
fied into agreed upon and adopted sets of

• core process areas, see Table 1
• business metrics, see Table 2 and
• relationships between process areas and business metrics.

The core process areas are essentially based on CMMI combined with specific fo-

cus areas derived from the Siemens business needs. CMMI defines 22 key process
areas [10]. The Siemens software process model defines 18 process areas, of which 6
process areas are general enabler processes that indirectly influence company

Table 1. Process areas used for the simulation model based on an existing conceptual model

Process Areas
System Family Incremental Process Models
Requirements Management Peer Reviews
(Quantitative) Project Management Platform Development, Component Reuse
Configuration Management Quality Management
Technology Innovation Process Definition and Maintenance
Supplier Management Organizational Process Performance
Architectural Design Process Continuous Quantitative Process Im-

provement
Testing Process Modeling and Visualization
Causal Analysis and Resolution Organizational Training

 Deriving a Valid Process Simulation from Real World Experiences 277

development and business by laying the ground for a systematic process-based devel-
opment. The company practice and experience has resulted in focusing on this set of
adapted process areas, which adequately represent the way how software development
is done in this company.

The set of seven business metrics were synthesized from software development of
different company units, some of which are similar to metrics that are commonly used
in the software industry, like cycle time or schedule fidelity [11].

Originally, this conceptual model was developed for process improvement consult-
ing purposes, not for simulation. Accordingly, these sets are not validated in a formal
manner, but have been proven useful within different practical and project contexts
and are generally acknowledged and accepted throughout the company.

This structure is used unchanged for the simulation model: The key process areas
are mapped onto the internal states tx̂ , the business metrics onto the outputs tŷ , and

the relationships onto the existence of weights 0)(≠•
ijβ (which still need to be quanti-

fied, see Section 3.3).

Table 2. Metrics used for the simulation model based on an existing conceptual model

Metrics
Scope of (Requirement) Fulfillment Schedule Compliance
Budget Compliance Internal Defect Correction Cost
Field Quality Reusability
Cycle Time

3.3 Model Parameter Estimation Based on Expert Knowledge

The major difference between a conceptual process model and a simulation model
(i.e. a model, which can be enacted) is the quantification of behaviour: Conceptual
models often show qualitative aspects only, simulation models need complete quanti-
fication. As stated above, it is one goal of this research to quantify the existing con-
ceptual model (see Section 3.2).

Expert surveys are an established method to estimate quantitative values, which
can not just be deduced from project or production data. Therefore, a structured ques-
tionnaire (together with an accompanying motivation and instruction manual) was
developed, which was sent to process experts from different organizational company
units.

Specific care was taken to phrase the survey questions in the language of the proc-
ess experts, not using mathematical terminology or formulas in the questionnaire.
Questions were designed with seven-point scaled alternatives to be checked concen-
trating on one aspect of the model at a time, e.g. the time variations (agility) of one
process area or the strength of a particular relation. Overall, the questionnaire
contained questions on 126 model quantifications and took about 40-90 minutes to
complete. All process experts provided estimates to all of these process- and business-
related parameters that are well-established in the company.

The median of the answers from 18 completed interviews were mapped to the re-
spective parameters resulting in the intended simulation model. The presentation of

278 C. Dickmann et al.

these detailed company-specific results would, however, exceed the scope of this
publication.

The median was used because it is less sensitive to singular outliers. As expected,
the answers show some degree of variance. Causes might be: differing expert opin-
ions, diverse work backgrounds or individual answer behavior to the questions. It
might be interesting to further analyse this variance in order to distinguish subgroups.
However, the statistical basis (18 samples) is not yet sufficient for such an attempt.

3.4 Next Steps

While the prospective expert survey results discussed above (i.e. process concepts,
relations and relation strengths known prior to the existence of the simulation model)
provide justification for the isolated mechanisms of the model (relations and dynam-
ics), the resulting overall behaviour can only be assessed based on simulation results
of the entire model. This work is currently ongoing (an can not yet be reported). It
will be divided in two tasks:

• Typical (meaningful) simulation scenarios will be prepared and presented to proc-
ess experts for appraisal in the sense of “This scenario conforms to my notion of
real world behaviour (answer: yes or no).”

• Stochastically distributed input patterns will be applied to scan for apparently erro-
neous behaviour within “less used” parts of the simulation domain. This resembles
the proposal in [8] using an optimization approach to search for such outliers.

4 Customization

Even a validated simulation model represents just one instance of an organization, in
a more or less representative way. In order to be used in different contexts, it needs to
be adapted or customized.

Of course, all simulation models can be customized in principle by simulation ex-
perts or model developers. However, the challenge is to bring this ability to the proc-
ess experts themselves in order to increase speed and flexibility of model evolution as
well as acceptance.

Within this project, this is achieved by two means: Flexible mapping of normalized
variables and a spreadsheet-based configuration interface.

4.1 Mapping of Normalized Variables

The mathematical equations (1) - (5) combine very different variables, e.g. the capa-
bility of a process area measured in CMMI levels with metrics measured in percent-
age (Scope of Fulfillment) or days (Cycle Time). Moreover, values for some variables
rise in case of improvements (e.g. Scope of Fulfillment) while others decline (Cycle
Time). Theoretically, the translation between these units might be incorporated in the

weight factors)(•
ijβ . For practical configuration, however, this would blend two issues:

the relative strength of an interaction and the translation or conversion of units. Ex-
perience has shown that it would require the knowledge and skills of a developer who

 Deriving a Valid Process Simulation from Real World Experiences 279

is well familiar with the model to comprehend and handle such interdependencies
correctly.

Normalization is an acknowledged modeling technique to avoid such dimension
and scale conversion and translation. Therefore, all computational model variables

ttt yxu ˆ,ˆ,ˆ are normalized to the dimensionless interval]1,0[: equations (1) - (5) are

already formulated accordingly. All parameters uniformly refer to this scale basically
representing relative weights. Thus, parameter values can be much more easily cus-
tomized or adjusted by process experts without in-depth modeling experience, be-
cause unit conversion or translation issues are separated from interaction strength.

However, although such normalized variables carry all information of the simula-
tion results, the addressees of the simulation results – process experts and managers –
are not accustomed and prepared to interpret “normalized metrics” etc. This would
immediately convey the impression of “not adjusted to our problem”. Therefore all
computational variables ttt yxu ˆ,ˆ,ˆ are mapped to a configurable range by a simple

linear transformation.

⎪
⎩

⎪
⎨

⎧

>
≤≤⋅−+

<
=

1for

10for)(

0for

)(map

argM

argargmMm

argm

arg

arg

argargarg

arg

 (6)

The parameters argm and argM can be configured for each variable separately, e.g.

as 0 and 100 for a variable measured in percentage as Scope of Fulfillment or as the
minimal and maximal Cycle Time measured in days. Therefore, these parameters
provide the simplest level to customize the general model to the context of a specific
organizational unit.

4.2 Spreadsheet-Based Configuration

In order to promote usage as well as acceptance of process simulation, it is helpful to
align the tools with the context and the experience of the customer, not the other way
round. However, process experts (and managers) do neither use expert-centered simu-
lation tools nor technologies like XML (as the model storage format proposed in [4])
on a regular base. Customization mechanisms on such a rather technology-centered
level would hardly be used by these target groups.

Therefore, it was an important part of this project to create a seamless spreadsheet
user interface (in this case a Microsoft Excel form) for customization of all model
parameters. The goal is to enable software development process experts to adapt and
customize the model by staying in their familiar tool context, i.e. spreadsheets, and
not force them to use less known simulation tools or XML editors. While this seems
to be a rather technical issue – the respective software modules need to be designed
and programmed – it has the potential to create a new usage scenario and environment
for process simulation modeling reaching beyond the current boundaries of simulation
model development (i.e. direct process knowledge acquisition). First experiences of
this approach (beta testers) are promising.

280 C. Dickmann et al.

5 Discussion

We aim at supporting a large and globally operating process organization to better
plan software process improvement projects: software development process owners and
management stakeholders responsible for related budgets should be enabled to test
different process improvement approaches by using a simulation tool. This simulation
needs to reflect the relevant aspects of day-to-day business and performance controlling,
otherwise it lacks the power to convey adequate insights to be of practical use.

In order to develop a trustworthy model that gets accepted by process experts in the
company for this purpose, we used a process model that is based on experiences in
software development and CMMI usage in a global software developing company.
Thereby, explicit representations from implicit knowledge, experience or assumptions
existing within the company were created compared to e.g. a theoretical or literature-
based model. The experts were able to estimate these model parameters known from
their practice. However, they were aware that their individual experience may vary
from the experience in other organizational units of the company. It has been clearly
communicated that this survey contributes to the model to that effect that it is a first
approach of describing their work reality in a model.

Practice and experience within Siemens has resulted in focusing on a specific set of
adapted process areas, which adequately represent the way how software development
is done in this company. The second company-specific adaptation relates to the de-
velopment and business metrics that are used to quantify the effects of investing in
development or enabling processes. The dynamics of process changes following in-
vestment and the inter-process relations were quantified by getting estimates from
software process experts from different units of Siemens. As a result, a complete and
end-to-end mathematical model of this software-producing organization was config-
ured. Such a complete model reveals a considerable number of additional important
connections and issues, compared to individual knowledge about many of the single
pieces (single processes) of such a model that are well known. To our knowledge,
such real-world configuration and process modelling is not normally done in process
improvement projects.

Often, process improvement evaluation projects compare software development
metrics with CMMI improvement, e.g. before and after process improvement pro-
jects. Our work goes one step further in that it defines a simulation tool based on real-
world quantitative estimations that allows for experimenting with different process
improvement project scenarios and thereby can show effects of process investments
that fit company ways of working.

Of course, the model is a high-level abstraction and simplification of reality, there-
fore all results and conclusions drawn from them need to be critically examined and
used with due care. Nevertheless, the simulation tool can be used for organizational
development: The results and insights from simulations can serve as challenge and
guideline for process practitioners and management to adapt the company’s processes
and process metrics, as well as to change the organization, e.g. by changing the staff-
ing of company units, by adding or changing supplier relations, etc.

In a subsequent step, we plan to generate case studies that validate the simulation
tool against concrete process improvement projects from the company by comparing
business performance before and after process changes.

 Deriving a Valid Process Simulation from Real World Experiences 281

The mathematical model that is configured by real-world values from different
branches and organizational units of Siemens represents an average profile for process
improvement at Siemens. About 180 parameters were set in total, of which ca. 100
can be assumed to be rather stable throughout Siemens, so that they would not need to
be adapted for most of the organizational settings that are simulated.

However, other parameters need adaptations if the simulation tool is to be used in a
specific company branch or unit. Therefore, a flexible customization of the simulation
tool was realized.

For further validation of the model configuration, it is planned to compare simula-
tion results with metrics and development or business performance results from com-
pany process improvement projects in a before-after manner.

The results of the experts’ model paramater estimations will be fed back into the
company’s process model in order to reflect about assumptions and check for needed
updates. This parameter data will also be used to identify models that fit more specific
subgroups of the company’s process environments.

In a next step, it also seems suitable to investigate how the configuration needs to
be adapted to compare traditional development processes with newly emerging agile
and SCRUM-based software development processes.

6 Conclusion

This work demonstrates an approach to develop valid and trustworthy simulation
model. The model is drawn from an existing conceptual model and augmented by
quantitative dependencies by transforming implicit knowledge of process expert into
explicit quantitative relations.

This adapted process model will be used to support software development manag-
ers and process practitioners in finding strategies to change and improve existing
software development practice.

References

1. Kaplan, R.S., Norton, D.P.: The Balanced Scorecard: Translating Strategy into Action.
Harvard Business School Press (1996)

2. Raffo, D.M., Kellner, M.I.: Modeling Software Processes Quantitatively and Evaluating
the Performance of Process Alternatives. In: K. E. Emam and N. Madhavji (eds.): Ele-
ments of Software Process Assessment and Improvement. IEEE Computer Society Press,
Los Alamitos, California (1999) 297 -341

3. Raffo, D.M., Kellner, M.I.: Empirical Analysis in Software Process Simulation Modeling.
Journal of Systems and Software 53 (2000) 31-41

4. Birkhölzer, T., Dantas, L., Dickmann, C., Vaupel, J.: Interactive Simulation of Software
Producing Organization's Operations based on Concepts of CMMI and Balanced Score-
cards. Proceedings of the 5th International Workshop on Software Process Simulation and
Modeling (ProSim 2004), Edinburgh (2004) 123-132

5. Pfahl, D., Stupperich, M., Krivobokova, T.: PL-SIM: A Generic Simulation Model for
Studying Strategic SPI in the Automotive Industry. Proceedings of the 5th International
Workshop on Software Process Simulation and Modeling (ProSim 2004), Edinburgh
(2004) 149-158

282 C. Dickmann et al.

6. Raffo, D.M, Nayak, U., Setamanit, S., Sullivan, P., Wakeland, W.: Using Software Proc-
ess Simulation to Assess the Impact of IV&V Activities. Proceedings of the 5th
International Workshop on Software Process Simulation and Modeling (ProSim 2004),
Edinburgh (2004) 197-205

7. Birkhölzer, T., Dickmann, C., Vaupel, J., Stubenrauch, J.: Towards an Interactive
Simulator for Software Process Management under Uncertainty. Proceedings of the 6th
International Workshop on Software Process Simulation and Modelling (ProSim 2005), St.
Louis (2005) 169-174

8. Wakeland, S., Raffo, D.M.: Heuristic optimization as a V&V tool for software process
simulation models. Software Process Improvement and Practice 10-3 (2005) 301-309.

9. Birkhölzer, T., Dickmann, C., Vaupel, J., Dantas, L.: An Interactive Software
Management Simulator based on the CMMI Framework. Software Process Improvement
and Practice 10-3 (2005) 327-340

10. CMMI Product Team: CMMI for Development, Version 1.2. CMMI-DEV, V1.2,
CMU/SEI-2006-TR-008, Pittsburgh (2006)

11. Galin, D., Avrahami, M.: Are CMM Program Investments Beneficial? Analyzing Past
Studies. IEEE Software 23-6 (2006) 81-87

Project Delay Variability Simulation

in Software Product Line Development

Makoto Nonaka1, Liming Zhu2, Muhammad Ali Babar3, and Mark Staples2

1 Faculty of Business Administration, Toyo University, Japan
nonaka-m@toyonet.toyo.ac.jp

2 National ICT Australia
{liming.zhu,mark.staples}@nicta.com.au

3 Lero, University of Limerick, Ireland
Muhammad.alibabar@ul.ie

Abstract. The possible variability of project delay is useful information
to understand and mitigate the project delay risk. However, it is not suf-
ficiently considered in the literature concerning effort estimation and
simulation in software product line development. In this paper, we pro-
pose a project delay simulation model by introducing a random variable
to represent the variability of adaptive rework. The model has been val-
idated through stochastic simulations by comparing generated adaptive
rework to an actual change effort distribution, and by sensitivity anal-
ysis. The result shows that the proposed model is capable of producing
reasonable variability of adaptive rework, and consequently, variability
of project delay. Analysis of our model indicates that the strength of
dependency has a larger impact than the number of residual defects, for
the studied simulation settings. However, high levels of adaptive rework
variability did not have great impact on overall project delay.

Keywords: process simulation, software product line development,
product quality, project planning.

1 Introduction

Software Product Line (SPL) development can shorten the total cycle time,
the duration from the beginning of core asset development to the end of prod-
uct development, by achieving large-scale reuse [1]. However, effort estimation,
planning, and development management for SPL are more complex and difficult
than those for sequential development, because of inter-connected relationships
between core assets and products, concurrency of their projects, and multiple
deadline management [2]. In addition, there are still general problems with soft-
ware effort estimation errors such as unplanned work [3] as well as requirements
volatility [4]. The total cycle time can sometimes be longer than initially planned
because of these problems.

One source of unplanned work is poor quality of software artifacts. A certain
number of defects will inevitably remain in released core assets, as software test-
ing can not demonstrate the absence of defects [5]. When residual defects in core

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 283–294, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

284 M. Nonaka et al.

assets are detected after their release to product projects (not to customers),
corrective maintenance1 is usually performed2 to modify the core assets. When
multiple product projects are undertaken simultaneously during core asset main-
tenance phase, corrective maintenance in core assets sometimes brings associated
rework to all ongoing product projects that depend on the core assets, to adapt
the products to the changed core assets. We call this type of rework “adaptive
rework”.3

With regard to this problem, we previously proposed a simulation model for
estimating project delay in concurrent software development and conducted a
deterministic simulation with fictional project data [7], which did not estimate
the variability of project delay. The variability, or the level of risk of project
delay is useful information [8] when a project manager wants to understand and
mitigate project delay risk. Even in the literature concerning effort estimation
and simulation, the level of risk of project delay in SPL development has not
been considered enough [9,10,11,12]. In consideration of the variability of project
delay, we set the following research questions in this paper. How much variability
of project delay in SPL development is expected when (a) the number of residual
defects in core assets changes and (b) the strength of dependency changes?

To explore these research questions, we propose a simulation model for estimat-
ing project delay and its variability by introducing a random variable to represent
the duration of adaptive rework. Furthermore, we increase the expressiveness of
the model by introducing inter-dependency of core assets. We conducted stochas-
tic simulations with fictional project data with the proposed model.

The reminder of this paper is organized as follows. Sect. 2 describes the pro-
posed simulation model which includes the previous model and the enhanced
features. Simulation results and derived implications are described in Sect. 3.
Sect. 4 discusses model evaluation. Sect. 5 contains a discussion and describes
related work. Concluding remarks are described in Sect. 6.

2 Proposed Simulation Model

Software process analysis approaches can be categorized into the following three
types [13]: analytical models such as COCOMO II [9], continuous simulation
models [14,15], and discrete-event simulation models [16,17,18]. A discrete-event
simulation model is suitable for detailed analyses of process and project per-
formance [19]. As we consider sequential events concerning residual defects and
adaptive rework, we apply a discrete-event simulation model to the proposed
model.

1 Corrective maintenance is defined in an IEEE standard [6] as “reactive modification
of a software product performed after delivery to correct discovered faults.”

2 In actual practice, not all discovered defects will always be fixed.
3 The meaning of ‘adaptive rework’ in this paper and that of ‘adaptive maintenance’ in

an IEEE standard [6] are somewhat different. Adaptive maintenance is defined in [6]
as “modification of a software product performed after delivery to keep a computer
program usable in a changed or changing environment.”

Project Delay Variability Simulation in Software Product Line Development 285

2.1 Primary Factors of the Simulation Model

Suppose that there is a limitation on available resources. To avoid or reduce
project delay, the frequency of adaptive rework as well as its duration should be
reduced. The frequency is closely correlated with the number of residual defects
in core assets. The duration of each piece of adaptive rework will in practice
relate to the strength of dependency between core assets and products. This
assumption is partly supported by [20,21,22] showing that design complexity
has a large influence on maintenance effort. The duration will also relate to
what development phase it occurs in. Literature reports that the ratio of the
cost of finding and fixing a defect during design, test, and field use is 1 to 13 to
92 [23] or 1 to 20 to 82 [24].

From this discussion, we select the following three factors as primary factors
of the simulation model.

1. The number of residual defects in core assets (NRD). NRD will depend on
product size, product complexity, process quality, and other factors. We as-
sume that NRD can be estimated.

2. The strength of the dependency (DEP). We consider DEP between core as-
sets and products as well as among core assets. DEP is represented as a
continuous variable that ranges from 0 to 1. DEP = 0 means no dependency,
and DEP = 1 means the strongest. In practice, there may be different levels
of dependency for different changes, but as discussed below, we use a single
DEP value to represent the worst-case dependency.

3. Work effort multiplier (WEM). We introduce WEM to represent the ratio
of the duration of pieces of adaptive rework for each development phase in
which adaptive rework occurs. We assume that each product project fol-
lows sequential processes. WEM is represented as a continuous variable that
ranges from 0 to 1.

2.2 Determining Adaptive Rework

To determine the duration of each piece of adaptive rework, we first consider
defect correction completion time in the core asset maintenance phase that de-
termines the time when adaptive rework occurs. The defect correction comple-
tion time can be determined by applying a Software Reliability Growth Model
(SRGM) [25]. Suppose that all residual defects in core assets are detected during
core asset maintenance phase. If we draw an SRGM curve during the phase, the
defect correction completion time of these defects can be determined by assigning
a time to each defect along with the curve depending on reliability growth.

Next, we introduce a parameter “worst case adaptive rework” (WCAR).
WCAR is supposed to represent the duration of adaptive rework in the fol-
lowing worst-case scenario: (1) the defect correction completion time is at the
end of the product project, and (2) DEP is the strongest.

WCAR inherently has a certain distribution, because the duration of WCAR
depends on what kind of defects corrected in core assets. Here we introduce a
continuous random variable to represent the WCAR distribution. According to

286 M. Nonaka et al.

0.0

0.1

0.2

0 2 4 6 8

worst case adaptive rework (days)

p
r
o
b
a
b
il
it
y

(a) A Change effort distribution from SEL data (b) A normal distribution (right-hand) for WCAR

4341

912
417

9024

0

5000

10000

< 1 hour < 1 day < 3days 3days <

Effort to Complete Change

O
b
s
e
rv
a
ti
o
n
s

Fig. 1. An actual error correction effort histogram and a distribution for WCAR

the Software Engineering Laboratory (SEL) data subset [26], an effort distri-
bution for error correction has a right-skewed distribution as depicted in Fig. 1
(a). To generate a WCAR distribution like Fig. 1 (a), we use the right-hand
half part of a normal distribution (Fig. 1 (b), μ = 0 and σ = 3, for example).
Note that the range of the WCAR distribution is larger than that of the SEL
data distribution, as the WCAR distribution represents worst cases of adaptive
rework instead of actual change effort.

With these parameters, the duration of each piece of adaptive rework can
be determined as follows. The duration of adaptive rework Δri(dj) (in months)
caused by the defect dj in the product project i is assumed to be represented by
the formula

Δri(dj) = EffDist−1
wcari(p) × WEMj(tdj) × DEPki × ε, (1)

where EffDist−1
wcari(p) (in months) is the inverse function of the WCAR effort

distribution probability function for the project i. Probability p is given at ran-
dom. WEM for the project i is represented with WEMj(tdj) when the defect dj

correction is completed in core asset maintenance phase at the time tdj . DEP
between the core assets k and the product i (or core assets i) is represented with
DEPki. The parameter ε is 1 if tdj is within the period of the product project i.
Otherwise, ε is 0.

2.3 Model Assumptions

The simulation model relies on the following assumptions:

1. Adaptive rework occurs at the time when the causal defect is corrected.
Actually, this assumption is not true in practice. Defect correction delay
has been observed in [27], which reported that 55% of defects were corrected
within a few days, 36% within the next week, and the last 9% before customer
release or in the next version.

2. The amount of adaptive rework decreases from WCAR, depending on DEP
and WEM, which is partly supported by [20,21,22,23,24].

3. Adaptive rework for completed projects is not performed even though later
defect corrections in dependent core assets may be performed.

Project Delay Variability Simulation in Software Product Line Development 287

Core Asset Development

Product Development

Product Team A

Product Team B

Core

Team

Core-1 maintenance

15 (mths)

Core-1

0 5 10

Prod-3

prod-1 Prod-2 Prod-6 Prod-7

Prod-4 Prod-5 Prod-8 Prod-9 Prod-10

Core-2 maintenanceCore-2

Fig. 2. Time schedule of the fictional SPL development project

4. Products are sequentially developed in planned order by an assigned team
with a limited number of resources.

5. The impact of imperfect defect correction during corrective maintenance in
core assets and adaptive rework is negligible, which is in practice supported
by [27]. That is, it makes little difference on project delay if we do not
consider defect correction effort arisen from the another defects that will be
injected during those activities.

3 Simulation Results

3.1 Project Data and Parameters

A fictional SPL development project has been studied for simulation. The time
schedule of the project is shown in Fig. 2. Arrows in Fig. 2 represent dependency.
In this project, 10 products are scheduled to be developed by two product teams
concurrently. Core assets are developed, maintained, and enhanced by a core
team that is independent of the product teams. Core-2 is an enhanced version of
Core-1. Prod-1 to Prod-5 depend on Core-1, while Prod-6 to Prod-10 depend on
Core-2. Core-1 maintenance phase is scheduled to be finished at the same time
when Prod-5 finishes. The scheduled total cycle time is 15 months. Each pair
of successive product projects is scheduled without any buffers. The duration
of core asset maintenance phase will be expanded in response to the delayed
product projects.

Note that the absolute sizes of core assets and products are not considered
here, because they do not directly affect simulation results in the proposed model.
Nonetheless, size does affect NRD as described in Sect. 2.1, and DEP might be
partly dependent on size.

Several patterns for NRD and DEP have been studied to explore the research
questions. For the other parameters, a fixed value or a fixed model is applied.

1. NRD: Four patterns of NRD have been studied ranging from 10 to 40 defects
in increments of 10 defects. These values are the sum of NRD in both Core-1
and Core-2.

2. DEP: We have studied three DEP levels of 0.2, 0.6 and 1.0.

288 M. Nonaka et al.

2.02

2.00 7.30

7.32

2.20

3.12

3.09

3.06

2.01

4.32

2.03

3.02

2.02 2.01

0 5 10 15

team-B

team-A

core-2

core-1

(months)

Fig. 3. A simulation result: detail view of project delay

3. WEM: By considering the empirical data concerning the cost of defect cor-
rection during design and test [23,24], a factor of 20 has been studied. To
make the model simple, we use a linear model ranging from 0.05 to 1.0.

4. Defect correction completion time: Though numerous SRGMs have been
proposed in the literature [25], we apply the following simple logarithmic
function

y = 1 + loga x, (2)

where y represents cumulative rate of defect detection, while x represents
normalized duration of core asset maintenance phase (0 < x ≤ 1). In this
simulation a = 20 is used, which means that 60% of residual defects are
corrected before 30% of maintenance phase, and 90% of defects are corrected
before 75% of the phase, for example.

5. WCAR: We use the distribution pattern in Fig. 1 (b). Note that WCAR is
limited up to 8 days in the simulations in order not to generate unrealistically
large amount of rework, though a normal distribution has unlimited values.

3.2 Result 1: Detail View of Project Delay and Adaptive Rework

Figure 3 shows a simulation result representing how project delay occurs caused
by residual defects in detail (DEP = 0.6, NRD = 20). The dots represent residual
defects and their correction completion time. One can see that Core-2 develop-
ment project is delayed for 0.02 months due to two residual defects detected in
Core-1 maintenance phase. The estimated total cycle time is 15.39 months (i.e.
a total delay of 0.39 months).

Figure 4 shows the histograms of generated adaptive rework with four combi-
nations of NRD and DEP. Note that each boxplot has a different scale in both
x-axis and y-axis. The shapes of the histograms are all skewed to the right, as
the WCAR distribution is also right-skewed. The ranges of Fig. 4 (c, d) are quite
smaller than those of Fig. 4 (a, b). The ranges of Fig. 4 (a, b) are still smaller
than those of the WCAR distribution in Fig. 1 (b), as the WCAR distribution
is assumed to have the largest WEM. In Fig. 4 (c, d), all pieces of adaptive
rework are completed within one day and most of them are less than 0.2 day
(two or three hours) because of weak DEP. The distributions with weak DEP
are considered to be a better approximation of actual change effort distribution
shown in Fig. 1 (a).

Project Delay Variability Simulation in Software Product Line Development 289

(b) DEP = 1.0, NRD = 40 (d) DEP = 0.2, NRD = 40(c) DEP = 0.2, NRD = 10(a) DEP = 1.0, NRD = 10

adaptive rework (days)

0.0 0.4 0.8

0

1
0

2
5

adaptive rework (days)

0 1 2 3 4 5

0

1
0

2
0

3
0

adaptive rework (days)

F
r
e
q
u
e
n
c
y

0 1 2 3 4

0

4

8

adaptive rework (days)

0.0 0.4 0.8

0

2

4

6

Fig. 4. Examples of generated adaptive rework histograms

1
5
.1

1
5
.2

1
5
.3

1
5
.4

1
5
.5

(a) DEP = 0.2 (b) DEP = 0.6 (c) DEP = 1.0

10 20 30 40

1
5
.5

1
6
.0

1
6
.5

1
7
.0

Total NRD (defects)

10 20 30 40

1
5
.2

1
5
.6

1
6
.0

Total NRD (defects)

10 20 30 40

1
5
.1

1
5
.2

1
5
.3

1
5
.4

Total NRD (defects)

E
s
ti
m
a
te
d
 t
o
ta
l
c
y
c
le
 t
im
e
 (
m
o
n
th
s
)

10 20 30 40

15.25 15.48 15.71 15.92

0.05 0.09 0.10 0.12

10 20 30 40

15.40 15.85 16.17 16.53

0.08 0.15 0.19 0.20

(A)

DEP = 0.2

NRD = 40

(B)

DEP = 1.0

NRD = 8

(A) (B)

mean 15.30 15.31

s.d. 0.04 0.08

(d) Variability comparison

NRD 10 20 30 40

mean 15.08 15.15 15.25 15.30

s.d. 0.02 0.02 0.04 0.04

Fig. 5. Simulation results on estimated total cycle time (Note: y-scales are different)

3.3 Result 2: Variability of Project Delay

We conducted 100-run simulations for each combination of NRD and DEP. The
boxplots in Fig. 5 (a, b, c) represent the simulation results. The mean and the
standard deviation of each combination are shown in the table below the boxplot.
Note that each y-axis has a different scale among boxplots.

The results imply that project delay and its variation can be held down if DEP
and NRD are low (DEP = 0.2 and NRD = 10). Even for the worst combination
in the studied settings (DEP = 1.0 and NRD = 40), the standard deviation of
estimated project delay was not very large (0.20). In this case, the range for all
data including suspected outliers was from 16.12 to 17.31. As the initial planned
time was 15 months, the estimation error rate ranges from 1.07 to 1.15. It means
that 8 percentage points of schedule estimation error has appeared in this case
at most. It is considered to be in practice quite a small difference for effort or
schedule estimation error. When we consider the impact of DEP on durations of
pieces of adaptive rework, it sometimes bring larger durations (over one or two
days) of adaptive rework as shown in Fig. 4 (a, b). However, the overall effect
on project delay is trivial according to the simulation result.

The following is a detailed analysis of the simulation results.

1. Magnitude of variability: The standard deviations for DEP = 0.2 are quite
small (from 0.02 to 0.04), and even those for DEP = 1.0 are still small (from

290 M. Nonaka et al.

0.08 to 0.20). This is because most pieces of adaptive rework are distributed
among smaller values regardless of DEP.

2. Difference of variability in NRD: The standard deviations of the same DEP
slightly increase as NRD increases, because the chance to have more pieces
of adaptive rework also increases. By comparing the pair of both (a, b) and
(c, d) in Fig. 4, one can see that the frequencies of (b) and (d) are larger
than those of (a) and (c) respectively, and that a few but large durations of
pieces of adaptive rework are appeared in both (b) and (d).

3. Difference of variability in DEP: Similarly, the standard deviations of the
same NRD increase as DEP increases. DEP has a stronger impact on vari-
ability compared to NRD, when we consider only for the studied simulation
settings. This is because different DEPs generate different WCAR distribu-
tions, while different NRDs share the same WCAR distribution. The shape
of a WCAR distribution is considered as a dominant factor on variability,
rather than NRD.

4. Comparison of variability: We selected two simulation settings which have
almost the same estimated total cycle time but different parameters: (A)
DEP = 0.2 and NRD = 40, and (B) DEP = 1.0 and NRD = 8. Fig. 5 (d)
shows the comparison results between them. To judge whether the means
of both settings are the same, we used Welch’s t-test at the 5% significance
level. The p-value was 0.40, so we can conclude that there is no statistically
significant difference on means between them. However, an F-test showed
quite a small p-value � 0.01. Then we can conclude that there is a significant
difference between their variances. This difference mostly comes from the
different WCAR distributions, as described in the item 3.

4 Model Evaluation

Because of the nature of simulation study, it is impossible to validate all as-
pects of the proposed simulation model comprehensively. However, the utility
of the model can be evaluated by using empirical data, even though it will
not demonstrate comprehensive validation. As we do not have enough empiri-
cal data at this moment, we follow four aspects of validation and verification
for simulation models [28]: conceptual model validity (between problem entity
and conceptual model), computerized model verification (between conceptual
model and computerized model), operational validity (between problem entity
and computerized model), and data validity.

Conceptual model validity and data validity: The proposed model is considered to
be reasonably valid under the assumptions described in Sect. 2.3, because the for-
mula (1) is partly supported by several empirical observations as stated in Sect. 2.1
and 2.2. Data validity as input to the model is also supported by these empirical
observations in terms of determining the WCAR distribution and WEM. How-
ever, there are some limitations of the model. We discuss this topic in Sect. 5.2.

Computerized model verification: We have confidence that the simulation pro-
gram is accurately implemented because of our precise investigations of the

Project Delay Variability Simulation in Software Product Line Development 291

simulation results (like Fig. 3 and Fig. 4), and because of our inspections of
the individual simulation runs including extreme conditions.

Operational validity: In general, operational validity is difficult to assess when no
observable problem entity is available. In such a case, comparison to other models
and sensitivity analysis are meaningful approaches to validate a simulation model
[28]. One possible approach is to compare the proposed model to other effort
estimation models. However, this approach is not applicable in this case, because
both COCOMO II [9] and COPLIMO [10], a COCOMO II based cost estimation
model for SPL development, do not produce variability of estimated effort. These
models have a lot of parameters such as effort multipliers, but these parameters
are deterministic but not stochastic.

Another possible approach is to evaluate the generated adaptive rework by the
simulation program rather than total cycle time. By comparing the distributions
of the generated adaptive rework in Fig. 4 (a, b) to the change effort distribution
from the SEL data in Fig. 1 (a), both distributions can be subjectively judged to
be similar. However, the ranges of Fig. 4 (c, d) are smaller than that of Fig. 1 (a),
as DEP has a strong impact on durations of adaptive rework. At least, we can
conclude that the simulation model is capable of producing reasonable adaptive
rework distributions.

Sensitivity analysis is also a useful approach to demonstrate validity of the
model, which we have already discussed in Sect. 3.3. It can be considered that
the model has reasonable validity but some limitations described in Sect. 5.2.

5 Discussion and Related Works

5.1 Calibration for Practical Application

When one wants to apply the proposed model in practical situations, the pa-
rameters of the model have to be calibrated. NRD and WEM may be able to
be estimated easily by investigating one’s own organizational defect correction
data. The WCAR distribution model might be generated by measuring adaptive
rework caused by residual defects. However, DEP will be difficult to calibrate,
though it has a stronger impact on duration of adaptive rework compared to
NRD, for the studied settings.

In this paper, specific DEP metrics are not assumed. DEP might depend on
attributes such as coupling between core components and product components,
number of dependent product components reusing a core component, and in-
heritance depth between core and product components. Those attributes and
measured values will be translated into DEP and calibrated by checking gener-
ated adaptive rework distributions like Fig. 4.

5.2 Limitations of the Model

The proposed model uses the calendar time scale for the duration of adaptive
rework instead of the effort or cost scale, because defect correction completion

292 M. Nonaka et al.

time is also represented by using the calendar time scale. Therefore, a project
delay always occurs corresponding to any residual defects, even though the du-
rations of pieces of adaptive rework are very short. In practice, such small pieces
of adaptive rework may not bring delay, but instead require additional effort or
cost. This is one of the limitations of the model in terms of conceptual validity.

In addition, the project delay estimated by the proposed model can not be
translated into absolute effort or cost, as the current model does not use those
scales directly. However, when considering relative effort or cost estimation error,
the current model may be useful as it is.

Moreover, the current model does not explicitly consider resource limitation
and resource allocation policies as well. Project delay will be occurred in practice
when enough resource are not available. There are other sources of project delay
such as unplanned work arisen from requirements change and defect correction.
We are in the process of introducing these factors into the simulation model.

5.3 Effort Estimation and Simulation in SPL Development

Several studies have appeared in the literature on estimating the benefits of SPL
development [10,29,30]. These studies use more macro-level analytical models
compared with our model. The primary purpose of the studies [29,30] is for
estimating the return on investment of SPL development compared with non-
SPL development. COPLIMO [10] is a deterministic cost estimation model for
SPL and does not represent uncertainty, as well as COCOMO II [9]. COCOMO-
U [12] introduces uncertainty into COCOMO II, but does not mention how the
model can be applied to SPL development.

Chen et al. proposed a discrete-event SPL process simulator using COPLIMO
as their base cost model [11]. Schmid et al. studied SPL planning strategies
through deterministic simulations [2]. These two studies have similar research
questions to ours. However, these studies do not explicitly use factors such as
NRD, DEP, and adaptive rework. They are also not capable of calculating the
level of risk of estimated effort under uncertainty, as they are based on deter-
ministic simulation models.

6 Conclusions

In this paper, we proposed a stochastic simulation model for estimating project
delay and its variability in SPL development. The model has been validated
through simulations with fictional project data, by comparing generated adap-
tive rework to an actual change effort distribution, and by sensitivity analysis.
The result shows that the proposed model is capable of producing reasonable
variability of adaptive rework, and consequently variability of project delay, even
though some limitations exist. Analysis of our model indicates that the strength
of dependency, or DEP, has a larger impact on durations of adaptive rework than
the number of residual defects, or NRD, for the studied simulation settings. The
result shows that the level of risk of project delay can be held down if DEP and
NRD are quite small. It will still be held down even though DEP is strong, if

Project Delay Variability Simulation in Software Product Line Development 293

most pieces of adaptive rework do not require large effort. When we consider the
impact of DEP, it sometimes bring larger durations of adaptive rework. However,
the overall effect on project delay is trivial according to the simulation result.

The future work primarily involves empirical validation of the proposed model,
enhancement of the model to overpass the limitations and the model assump-
tions which constrain the utility of the model, and calibration methods of the
parameters. We are in the process of enhancing the model to be capable of esti-
mating absolute effort overruns under specific resource allocation plan as well as
its limitation. We are also trying to contact some companies to gather empirical
SPL development data that are usable for model evaluation.

Acknowledgments. This research was partially supported by the Ministry of
Education, Science, Sports and Culture, Grant-in-Aid for Young Scientists (B),
16700042, 2005. National ICT Australia is funded through the Australian Gov-
ernment’s Backing Australia’s Ability initiative, in part through the Australian
Research Council. The third author was working with NICTA when this paper
was produced.

References

1. Clements, P., Northrop, L.M.: Software Product Lines: Practices and Patterns.
Addison-Wesley, MA (2001)

2. Schmid, K., Biffl, S.: Systematic management of software product lines. Softw.
Process Improve. Pract. 10 (2005) 61–76

3. Genuchten, M.v.: Why is software late? an empirical study of reasons for delay in
software development. IEEE Trans. Softw. Eng. 17(6) (1991)

4. Subramanian, G.H., Breslawski, S.: An empirical analysis of software effort esti-
mate alterations. J. Systems and Software 31(2) (1995) 135–141

5. Dijkstra, E.: Notes on structured programming. In Dahl, O.J., Dijkstra, E., Hoare,
C.A.R., eds.: Structured Programming. Academic Press, London (1972)

6. IEEE: Ieee std. 1219-1998, ieee standard for software maintenance (1998)
7. Nonaka, M., Azuma, M.: Software delivery estimation model for incremental and

iterative development process considering undetected design defects (in japanese).
In: Proc. Software Symposium 2003. (2003) 107–114

8. Jørgensen, M.: Realism in assessment of effort estimation uncertainty: It matters
how you ask. IEEE Trans. Softw. Eng. 2004(30) (2004) 209–217

9. Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E.,
Madachy, R., Reifer, D., Steece, B.: Software Cost Estimation with COCOMO II.
Prentice Hall (2000)

10. Boehm, B.W., Brown, A.W., Madachy, R., Yang, Y.: A software product line
life cycle cost estimation model. Proc. 2004 Intl. Symp. Empirical Softw. Eng.
(ISESE’04) (2004) 156–164

11. Chen, Y., Gannod, G.C., Collofello, J.S.: A software product line process simulator.
Softw. Process Improve. Pract. 11 (2006) 385–409

12. Yang, D., Wan, Y., Tang, Z., Wu, S., He, M., Li, M.: Cocomo-u: An extension of
cocomo ii for cost estimation with uncertainty. Lecture Notes in Computer Science
3966 (2006) 132–141

294 M. Nonaka et al.

13. Donzelli, P.: A decision support system for software project management. IEEE
Software 23(4) (2006) 67–75

14. Abdel-Hamid, T., Madnick, S.: Software Project Dynamics- An Integrated Ap-
proach. Prentice-Hall, Englewood Cliffs, NJ (1991)

15. Calavaro, G.F., Basili, V.R., Iazeolla, G.: Simulation modeling of software develop-
ment process. In: Proc. 7th European Simulation Symposium. Soc. for Computer
Simulation. (1995)

16. Hansen, G.A.: Simulating software development processes. IEEE Computer 29(1)
(1996) 73–77

17. Antoniol, G., Cimitile, A., Lucca, G.A., Penta, M.: Assessing staffing needs for a
software maintenance project through queuing simulation. IEEE Trans. Software
Eng. 30(1) (2004) 43–58

18. Padberg, F.: A study on optimal scheduling for software projects. Softw. Process
Improve. Pract. 11 (2006) 77–91

19. Kellner, M.I., Madachy, R.J., Raffo, D.M.: Software process simulation modeling:
Why? what? how? J. Systems and Software 46(2-3) (1999) 113–122

20. Epping, A., Lott, C.M.: Does software design complexity affect maintenance effort?
In: Proc. 19th Softw. Eng. Workshop. (1994) 297–313

21. Bocco, M.G., Moody, D.L., Piattini, M.: Assessing the capability of internal metrics
as early indicators of maintenance effort through experimentation. J. Software
Maintenance and Evolution 17(3) (2005) 225–246

22. Ramanujan, S., Scamell, R.W., Shah, J.R.: An experimental investigation of the
impact of individual, program, and organizational characteristics on software main-
tenance effort. J. Systems and Software 54 (2000) 137–157

23. Kan, S.H., Dull, S.D., Amundson, D.N., Lindner, R.J., Hedger, R.J.: As/400 soft-
ware quality management. IBM Systems Journal 33(1) (1994) 62–88

24. Remus, H.: Integrated software validation in the view of inspections / reviews. In:
Proc. Symposium on Softw. Validation, Elsevier (1983) 57–64

25. Musa, J.D.: Software Reliability Engineering. Osborne/McGraw-Hill (1998)
26. SEL: Sel (software engineering laboratory) data. http://www.cebase.org (1997)
27. Defamie, M., Jacobs, P., Thollembeck, J.: Software reliability: assumptions, real-

ities and data. In: Proc. 1999 Intl. Conf. Softw. Maintenance (ICSM’99). (1999)
337–345

28. Sargent, R.G.: Validation and verification of simulation models. Proc. 31st Conf.
Winter Simulation (1999) 39–48

29. Cohen, S.: Predicting when product line investment pays. Technical Report Te-
chinical Report CMU/SEI-2003-TN-017, Software Engineering Institute, Carnegie
Mellon University (2003)

30. Böckle, G., Clements, P., McGregor, J.D., Muthig, D., Schmid, K.: Calculating roi
for software product lines. IEEE Software 21(3) (2004) 32–38

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 295–306, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Modeling Risk-Benefit Assumptions in Technology
Substitution

Antony Powell, John Murdoch, and Nick Tudor

1 YorkMetrics Ltd, IT Centre, York Science Park, Heslington York YO10 5DG, UK
2 Department of Computer Science, University of York, Heslington, York YO10 5DD, UK

3 QinetiQ, Systems Assurance Group, Malvern Technology Centre, St Andrews Road
Malvern, Worcestershire, WR14 3PS, UK

antony.powell@yorkmetrics.com, jm@cs.york.ac.uk,
njtudor@qinetiq.com

Abstract. This paper describes the application of comparative simulation
models to reason about the economic risks and benefits of adopting new
methods and tools for software development. It addresses three questions: (i)
can technology substitution be modeled with sufficient confidence? (ii) what
modeling strategy is most appropriate? and (iii) what are the outcomes of
modeling technology substitution on an industrial case study? The end goal is to
develop models that support economic evaluations that are necessary and
sufficient to support technology substitution decisions. Such models will help
developers and managers to assess the value of a new technology and employ
strategies to de-risk its adoption.

Keywords: simulation, system dynamics, technology adoption.

1 Introduction

1.1 Principles of Technology Substitution

The adoption of a new development technology (tool, process or lifecycle) is a risky
endeavor. This is particularly so where the consequences of failure are high, such as
in the development of safety critical software. Here, a poor technology decision can
lead to substantial corrective costs, late delivery, or even failure of the end product.

As a result, many organizations tend to follow excessively conservative
development strategies, particularly for high-integrity software products.
Improvements in technology are limited and tend to finesse existing development
methods and processes in a piecemeal manner. Arguments for their adoption on a new
project are based on relatively minor changes to existing practices and performance.

The technical and economic comparisons needed to support technology adoption
are straightforward when the substitution is 'like for like'. However, when more
radical technologies become available, like formal methods, the safety critical domain
is slow to capitalize, despite potentially compelling business cases. They are naturally
late adopters, waiting for establish convincing results from other application domains.

Where the technology being modified has a direct influence on software safety
processes themselves, it is not always practical to rely on trials in other domains. In

296 A. Powell, J. Murdoch, and N. Tudor

these cases, the organizations must provide two strands of evidence to support the
argument for adoption of the new technology – technical and economic.

The technical evaluation usually involves a stepwise comparison of the ‘as-is’ and
‘to-be’ approaches to demonstrate that the technical output is the same or better, all
other things being equal. The criteria used ultimately affect product qualities such as
validity, certifiability, reliability, and consistency of the output. The objective is to
justify that the new process is technically ‘at least as good as’ its predecessor.

The economic evaluation builds models to predict the commercial impact on the
project of introducing the new technology. The criteria used include performance
factors such as cost, timescales, resources, and risk. These factors are inherently
dependent on the evaluation of the technical impact of the new technology. The aim is
to show the process is economically more attractive than its predecessor.

In both cases the substitution decision is based on evidence and arguments of the
efficiency, effectiveness and efficacy of the new technology by use of analysis,
experiments, or case studies. In practice, however, many attempts at process
improvement often fail to deliver the expected improvements due to experimental
errors, technical difficulties, unexpected costs, or changes in application context.
Furthermore, even where the technical and process change can be technically
justified, and the economic payback appears significant, the business inertia and risks
are often prohibitive to technology adoption.

The substitution argument therefore presents essential difficulties for managers
who must commit to a new technology based on predictions of its technical and
economic impact. The aim of this paper is to explore how the substitution decision
can be pragmatically modeled to provide better evidence for the business justification
and decision for technology substitution.

1.2 Assessment of Technology Substitution

The advantages and disadvantages of a change in a development process can be
assessed from several viewpoints. For example, we can consider the responsibilities at
each of the typical ‘layers’ of engineering management as illustrated in Figure 1. A
process (or product) innovation can be assessed in terms of (i) the added value, (ii) the
added risk, and (iii) compliance with applicable constraints.

A particular process or product technical innovation has therefore to be considered
from numerous technical and organizational perspectives. This is the basic concern of
technology transition.

In practice organizations need models of the economic consequences of adopting
the new technology, subject to an ‘at least as good as’ technological substitution [1].
The business justification is based on the new technology being better, cheaper, faster
and more predictable than the existing process. Whilst any model is predicated on the
technical uncertainty, an economic model may help managers to decide ‘is it a risk
worth taking?’

The problems of modeling this decision can be categorized as essential and
accidental.

Essential problems reflect the intrinsic complexity of real world processes. The
development of software is a socio-technical activity with internal and external
uncertainties. The nature of software as a dynamic feedback system, with emergent

 Modeling Risk-Benefit Assumptions in Technology Substitution 297

Unit Engineering
Component Engineering

Systems Engineering

Software Engineering

Safety Engineering
Security Engineering

Hardware Engineering

Project Management

Organization Management

Enterprise Management

Legal, Social, Environment

D ep
e
nd
ab
i l i t
y

E n g i n
e e r i n
g

P ro
du
c t

E n g i n
e e r i n
g

Governance , Return on Investment
Financials, Balanced ScoreCard

Capability Performance, Process
effectiveness, effiiciency
CMMI process maturity

Project Performance , product
delivery

PSM , ISO /IEC 15939

Integrated Product System
Performance - TPMs, MoEs

Engineering measures , specialty
technical measures

Integrated Product System
Dependability properties

Assurance of claimed properties

Performance and impact on
environment

Assurance

Enterprise internalised risk

Failures due to practices,
processes, integration of these,

resourcing

Failures due to resourcing ,
planning, monitoring and adjusting

project activity

Failures arising from integration ,
interfaces, emergent failures

Faults introduced in specification ,
design, implementation within
specialist technical procesees

Product and service failure classes
defined as dependability properties

Assurance about residual risks
Assurance about externalised risks

Social and environmental
residual, externalised risk

Value acceptability Risk acceptability

Legal Compliance
Societal Norms

Strategy, Policy
Standards, Capability Maturity

Reference Models

Functional Strategies , Policies

Project Plans
Capability Processes and

Practices
Organizational Standards

National, International Standards
Professional Practices

Legal professional obligations
Certification Requirements

Conformance acceptability

Fig. 1. A Technology Substitution Framework

behavior, makes it difficult to predict as estimation and planning affects performance,
i.e. ‘a different estimate creates a different project’ [2].

Accidental problems reflect limitations in our understanding of the process and its
likely behavior. These limitations reflect the absence of sufficient case study data due
to limitations in experimental capability (e.g. prohibitive costs of experiments) and
learning (e.g. appropriate data and models). For example, an unforeseen technical
problem can have a significant effect on process performance. With better measures
and models we should be able to reduce these problems.

The problems of accurately predicting the impact of process change are acute. In
practice, the predictive accuracy of models is poor even for simple waterfall
lifecycles. As Kitchenham observes 'There is no evidence that estimation models can
do much better than get within 100% of the actual effort during requirements
specification and 30% of the actual effort prior to coding' [3]. The reality is that
practitioners and managers need to pursue more pragmatic approaches for limiting the
accidental problems that surround technology adoption.

1.3 Strategies for Modeling Technology Substitution

A response to the uncertainties in technology substitution is to focus on dealing with
the relative risks of a planned technology insertion. As Kitchenham observes: "senior
managers need to concentrate more on managing estimate risk than looking for a
magic solution to the estimation problem" [3]. That is, rather than trying to produce
the ‘perfect estimate,’ our models should instead try to elicit and control the risks of
technology adoption.

One approach to understanding risk is to use parametric models. The data from
experiments can be used in off-the-shelf tools like PriceS, Galorath, or COCOMO,
and sensitivity analysis performed. However, these parametric approaches are often
based assumptions that are inappropriate when the substituted technology departs so
significantly from the lifecycles on which the models are formulated.

298 A. Powell, J. Murdoch, and N. Tudor

Another approach is to perform process simulation using systems dynamics. This is
attractive as it uses flows and feedback loops to model how the new technology
would behave in practice. Moreover, it allows for extensive sensitivity analysis which
enables different scenarios and special case conditions to be checked. This can give
decision makers realistic feedback about their target field of use and envisioned roll-
out of the process. These assumptions are used as a baseline against which to reason
about alternative plans and monitor real performance as our understanding improves.

It is therefore possible to make a number of general observations on the nature of
the modeling task:

1. Technical Equivalence. Any model is unreliable in the face of technical uncertainty
and therefore a suitable level of technical equivalence must be established.

2. Business Context. Any model must clearly define the scope of the comparison to
specify what is included in and excluded from the assessment.

3. Adoption Process. Any model must consider the expected organizational impact of
tool adoption and process change (e.g. in terms of disruption etc).

4. Explicit Assumptions. Any model must contain an explicit dynamic hypothesis
about the expected change in process behavior.

5. Reasoning Capability. Any model must support reasoning about alternative
behaviors and planning assumptions via relative change and sensitivity analysis.

6. Improve Evidence. Any model must encourage the gathering and integration of
new evidence of cause-effect relationships that drive performance and behavior.

7. Model Improvement. Any model should enable plans (assumptions) to be
progressively refined over time as a series of baselines.

8. Sufficient Detail. Any model is inherently limited by the level at which data is
collected and causal relationships can be confirmed.

These assumptions allow us to build a very primitive model to describe the modeling
approach. This can then be amended over time with the support of further quantified
experimental evidence of process performance. The following assumptions are made
in the models developed in the next section:

1. The software development process is phased or staged; different phases apply to
the two processes; different technical resources are required by different phases;

2. The coordination between phases is of types: pipeline, sequential or hybrid.
3. An important difference between the conventional and formal processes is in the

area of fault generation, discovery and rework.

These variations have led us to develop a ‘plug and play’ approach to modeling the
software development process. Basic building blocks are provided that can be
connected together in different ways to capture features of real processes as usefully
as possible.

The remainder of this paper describes a dynamic evaluation method using the
general technique of broad range Sensitivity Analysis as a starting point [4]. The aim
is to get models of accuracy necessary and sufficient to show relative trends in order
to improve decision making and overcome barriers to adoption.

 Modeling Risk-Benefit Assumptions in Technology Substitution 299

2 A Case Study of Technology Substitution

This real-world industrial case study concerns the evaluation of a conventional test-
based development process (Process A) against a formal proof-based development
process (Process B). The aim here is to give a simplified overview to illustrate the
use of dynamic models to reason about the behavior and sensitivity of the two
processes.

2.1 Step 1 – Model Boundary

Modeling the technology substitution relies on finding a common boundary at which
the two processes can be compared. This assumes a level at which the inputs and
outputs are broadly comparable.

Process A follows a conventional ISO/IEC 12207 waterfall lifecycle process [5] as
illustrated in Figure 2. The Requirements are used to form the basis for a Top Level
Design that outlines the architecture and functionality of the system. A Detailed
Design is then manually Coded and Unit Tested before Integration Testing.

Process B follows a formal development process with the comparative footprint
represented by the shaded box in Figure 2. The Requirements are expressed as a
Formal Specification which is then Refined before being Autocoded and the output is
Tested for exceptions. Both processes take a design specification as an input and
result in verified code.

Customer

LRIPS

TLD

DD

Code

Unit Test

Rig
Integration

SATDOC

Customer

LRIPS

TLD

DD

Code

Unit Test

Rig
Integration

SATDOC

Autocode
coverage

Customer

LRIPS

TLD

DD

Code

Unit Test

Integration

SATDOC

Customer

REQS

TLD

DD

Code

Unit Test

Integration

SATDOC

Fig. 2. Comparative Process Footprint

The substitution of the conventional process with a formal one promises benefits
on a number of levels, including: (i) the direct removal of the resource-intensive
hand-coding and unit testing processes could represent a very significant saving in
costs and timescales, (ii) the use of an automated formal process can reduce the
latency of design and code errors, illustrated by the inner loop in Figure 3, and

300 A. Powell, J. Murdoch, and N. Tudor

 Requirements

Validation

Design

CodeVerification

Passed

Requirements

Validation

Design

CodeVerification

Passed

Fig. 3. Modeling Rework Loops

(iii) the rapid iteration provides early feedback of requirements problems, as
represented by the outer loop.

There is, however, reluctance to move away from coding and unit testing that
represent tried and tested processes with relatively known technical outcomes. An
insight into the relative performance and sensitivities of the two processes is therefore
essential to the evaluation.

2.2 Step 2 – Model Objectives and Assumptions

The purpose of the model is to understand the relative performance of the two
processes and reason about the consequences of adopting the new process. This is an
iterative process that involves eliciting assumptions about process behavior and
refinement using performance data.

The basic assumption is that we model the processes in isolation, both processes
starting with the same inputs, and producing common outputs. This excludes
upstream and downstream activities, concurrent projects, holidays and lost time etc, in
order to simplify the comparison.

The case study model therefore assumes that Process A and Process B perform the
same quantity of work, using the same resource, in order to generate an equivalent
output. We are solely interested in the relative effort and duration of each process.

The aim is to build simple but representative models in the first instance, followed
by more advanced models as understanding increases. We only need detail at a level
necessary and sufficient to capture the relative performance of the two processes.

2.3 Step 3 – Model Construction

In the case study Processes A and B each have three intermediate stages as show in
Table 1 below. It is important to note that the outputs of each stage are not equivalent

Table 1. Process Stages

 Process A Process B
Stage 1 Design Formal Spec
Stage 2 Code Refinement
Stage 3 Unit Test Autocode/Test

 Modeling Risk-Benefit Assumptions in Technology Substitution 301

Fig. 4. Case Study Simulation Model in Vensim [6]

in both processes. The model uses flows in the individual stages as means to
understand performance of each process as a whole.

The model is then constructed using the model shown in Figure 4 below; each
model has three phases with associated work (units of activity, e.g. code modules) and
rework flows.

For simplicity the basic model assumes that the stages are sequential rather than
concurrent. The model includes the summary of effort and durations as the main
output variables. Finally, Productivity Multiplier and Quality Multiplier variables
are used to aid the sensitivity analysis of the Rate and Fault assumptions to be
examined.

2.4 Step 4 – Data Gathering

The process of data gathering is driven by the model objectives and assumption, and
must be at a level necessary and sufficient to describe relative performance.

The inputs to the model are the quantity of Work to be performed, the work Rate of
each stage, the Fault percent (or breakage) per phase, and the Time to Detect Rework.
The fault, detection and rework flows are expressed for all combinations of phases to
account for undetected rework slipping through the process. It also models the inner
and outer rework loops illustrated in Figure 3. Example data tables for productivity on
Process A and Process B are as follows:

302 A. Powell, J. Murdoch, and N. Tudor

Table 2. Example Data Tables

Process A Stage 1 Stage 2 Stage 3
Stage name Design Code Test
Initial Work 100 - -
Productivity 9 hours/unit 4.7 hours/unit 7.4 hours/unit

Process B Stage 1 Stage 2 Stage 3
Stage name Formal Spec. Refinement Autocode/Test
Initial Work 100 - -
Productivity 2.3 hours/unit 4 hours/unit 1.6 hours/unit

An indirect benefit of constructing models with relative rather than absolute data is
that it can protect commercial confidentialities. The data tables reflect relative values
that can be negotiated and agreed by participants including tool vendors and users.

2.5 Step 5 – Model Runs, Sensitivity Analysis and Validation

The model was therefore run with data taken from the experiments performed on the
Conventional Testing (Project A) and Formal (Project B) approaches to development
as shown in Figure 5 below.

 6,000

4,500

3,000

1,500

0

0 20 40 60 80 100 120 140 160 180 200
Time (day)

Total Effort[A] : Current
Total Effort[B] : Current

Fig. 5. Results of Model Run - Total Effort Profiles [Process A and Process B]

In this example, the results of the initial run show an overall reduction in the
development cost from 4500 person-hours to 1600 person-hours and a corresponding
reduction in duration from 186 days to 73 days.

Whilst the initial results might show distinct benefits, the modeling approach seeks
to validate the assumptions on which the relative judgments are being made. In
practice the process would be to seek more accurate performance data, refine the
models and achieve a consensus on the outcomes. It must also take account of other

 Modeling Risk-Benefit Assumptions in Technology Substitution 303

pragmatic considerations including skills requirements, resource leveling, schedule
constraints, levels of reuse, etc.

In order to test the relative assumptions, the model was then used to perform
multivariate sensitivity, for example to perform multivariate sensitivity analysis uses
the Productivity Driver variable on both processes This simulates the consequence of
predictions of likely productivity to be between 50% worse than expected and 100%
better than expected.

The results of the sensitivity run are shown in Figure 6. The top line-graph shows
the total effort forecast by the simulation of Process A. The bottom line-graph shows
a sensitivity of the model of Process B to a variation in Productivity between -50% to
100% (across all stages) over 500 model runs. The sensitivity is expressed as
confidence bands of 50%, 75%, 95% and 100%. The reader should note the different
effort scales on the two charts.

The relative cost-benefit can then be assessed using sensitivity in effort variance
(Figure 7). This shows the results of effort variance (Effort Process B – Effort Process A)

Fig. 6. Results of Sensitive Analysis

304 A. Powell, J. Murdoch, and N. Tudor

Fig. 7. Sensitivity in Effort Variance

for 500 simulation runs. The confidence bounds of 50%, 75%, 95% and 10% are
colored on the chart.

The results from the example show a high degree of confidence that Process B will
yield reductions in effort relative to Process A. This pay-off sensitivity supports
evaluation of risks-benefit assumptions and can provide evidence of the acceptable
‘risk-premium’ for adopting the new technology.

The analysis also needs to take into account the relative sensitivities of fault
injection, detection and rework. This is illustrated in Figure 8 which shows graph of
the Undiscovered Rework (units) over time for an example model run where fault
rates are assumed to be equal.

Fig. 8. Rework Strip Graph

The results illustrate a left-shift effect in Process B which benefits from earlier
detection and fixing of rework. In practice the formal approach of Process B promises
to reduce fault injection and detection rates even further .

 Modeling Risk-Benefit Assumptions in Technology Substitution 305

Related sensitivity runs of fault injection, detection times and rework flows
effectively simulate the inner and outer rework loops. These show high confidence
that Process B is robust to higher rates of fault injection and breakage.

2.6 Step 6 – Model Review

A key tenet of the model is to iterate around the evidence gathering, modeling and
analysis, akin to a scientific method of investigation. It is critical to keep in mind that
these are models of reality that are used to progressively refine the understanding of
the users. If applied correctly the modeling approach can aid understanding, but if
used inappropriately it has the potential to mislead. For example, the model might
indicate a reduction in project duration of 25% but applied in practice the demands of
the wider program will dictate the actual duration. The results must therefore always
be considered in the context of the underlying context and assumptions on which the
model is constructed and applied (as illustrated in Section 1.3). This is an iterative
process of providing and testing evidence to support the arguments on relative
performance and refining the models accordingly.

The basic model contained in this paper illustrates the principles of using system
dynamics to model the cost-benefit assumptions of technology substitution. However,
more advanced models have been constructed according to the projects and
technologies being evaluated [7]. The final decision to adopt the new technology
would be made against the evidence provided and arguments for its impact supported
by the model. The decision makers must evaluate if the model results and confidence
bounds can outweigh the risk-premium of adoption.

3 Conclusions

Technology adopters must strive to understand and de-risk the substitution process
through integrated technical and economic evaluation - supported by analysis, case
studies and experimental evidence.

The case study presents a technological substitution argument with significant
technical and economic implications. This study does not enable a decision for
adoption to be made based upon expected cash value return. It does, however, give
indication of relative risks and benefits, supporting the observation by Kitchenham
that "senior managers need to concentrate more on managing estimate risk than
looking for a magic solution to the estimation problem" [3]. This study deals with the
uncertainties in technology substitution by focusing on the relative risks of a planned
technology insertion. That is, rather than trying to produce the ‘perfect estimate,’ our
models instead try to elicit and control the risks of technology adoption.

The development of a reliable economic or commercial model of technology
substitution is therefore intrinsically limited in the presence of technical uncertainty.
Without adequate justification that the processes are meeting the technical equivalence
requirement, or may rely on contingent corrective action in order to achieve it, we face
severe limits on our ability to build a model that will reflect the process behavior when
applied in practice. A cost model based on piecemeal decomposition and comparison of
constituent activities would be so unreliable and potentially misleading as to undermine
the commercial argument that it is trying to support.

306 A. Powell, J. Murdoch, and N. Tudor

This work has therefore attempted to determine a pragmatic method for justifying
the economic (commercial) outcomes of technology substitution in practice. This
should contribute to a business case that evidences a new technology as predictably
better, faster and cheaper than its predecessor.

The proposed approach concentrates on modeling the assumptions in the
technology adoption decision. The model simulates the high-level flows of work in
the two processes using available data and assessments of process differences. While
these are gross assumptions about behavior, a model can be evolved to describe the
large-scale payback curves that need to be achieved in order to gain acceptance for the
process change.

This approach promises some advantages compared to conventional models:

• It makes essential technology insertion, costing and planning assumptions explicit.
It encourages users to refine their understanding and decision-making, rather than
relying on the point estimates of black-box cost models.

• It helps investigate the trade-offs between planning variables. It prompts users to
consider the consequences of alternative scenarios, such as the implication of
perturbations to the performance of the technology.

• It allows assumptions to be progressively refined over time. It treats estimation and
planning as a continuous rather than one-off activity from which to understand the
bounds and limitations of risk and performance.

More work is required to build more advanced models that are sufficiently reliable to
help managers to determine cost-benefit curves to describe the risks and returns of
technology substitution. In order to do this it is crucial to gather further experimental
evidence of the behavior of the new technology. For the time being, the proposed
method presents a step towards building models that are necessary and sufficient for
supporting these arguments.

References

1. Galloway, A., Paige, R., Weaver, R., McDermid, J., and Toyn, I., “Technology Substitution
Arguments in the Context of DO-178B,” Department of Computer Science, University of
York, UK, 2005.

2. Abdel-Hamid, T.K., “Impact of Schedule Estimation on Software Project Behavior,” IEEE
Software 3(4): 70-75 1986.

3. Kitchenham, B.A. (1998), “The Certainty of Uncertainty,” European Software
Measurement Conference FEMSA 98, Antwerp.

4. Raffo, D., “Evaluating the Impact of a New Technology Using Simulation: The Case for
Mining Software Repositories,” ProSim Workshop, St.Louis, May 2005 [4]

5. ISO/IEC, “ISO/IEC 12207 - Information Technology Software Life Cycle Processes,”
International Organization for Standardization/International Electrotechnical Commission,
1995.

6. Vensim 5.0, Ventana Systems Inc, Harvard, MA
7. Powell, A.L. and Tudor, N. (2005) “Modeling Technology Substitution”, Report for

QinetiQ plc, June 2005.

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 307–319, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Evaluating the Impact of the QuARS Requirements
Analysis Tool Using Simulation

David M. Raffo1,2, Robert Ferguson3,
Siri-on Setamanit1, and Bhuricha Deen Sethanandha2

1 School of Business Administration, Portland State University,
Portland, Oregon 97201, USA

{raffod,sirion}@pdx.edu
2 Maseeh College of Engineering and Computer Science, Portland State University,

Portland, Oregon 97201, USA
bhuricha@cs.pdx.edu

3 Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA 15213, USA
rwf@sei.cmu.edu

Abstract. Adopting new tools and technologies on a development process can
be a risky endeavor. Will the project accept the new technology? What will be
the impact? Far too often the project is asked to adopt the new technology
without planning how it will be applied on the project or evaluating the tech-
nology’s potential impact. In this paper we provide a case study evaluating one
new technology. Specifically we assess the merits of an automated defect detec-
tion tool. Using process simulation, we find situations where the use of this
new technology is useful and situations where the use of this new technology is
useless for large-scale NASA projects that utilize a process similar to the IEEE
12207 systems development lifecycle. The method can be applied to assessing
the impact (including Return on Investment), break even point and the overall
value of applying any tool on a project.

Keywords: Process Simulation, Requirement Analysis Tool, Quantitative
Method, Technology Adoption.

1 Introduction

Competition in the software industry and the continuing pressure from low cost
economies is pressing companies to improve their efficiency and to find ways to op-
timize their development and quality assurance activities, both locally and globally.

New tools and new technologies offer promise for speeding software development
tasks, reducing costs and improving quality at all points along the development life-
cycle. Over the years, development organizations have invested heavily in these tools
with some success. But there have also been some failures. How can managers de-
termine whether a new tool or technology will be beneficial to their development
environment? Under what project conditions would it be beneficial to apply a new
tool or technology and when would it not be beneficial?

308 D.M. Raffo et al.

Process Simulation Modeling (PSM) is a technology that is increasingly used
within academic and research realms to evaluate issues related to process strategy,
process improvement, technology and tool adoption, project management and control,
and process design.

Recent developments in PSM tools have drastically cut the costs to develop these
models. Moreover, new models coupled with more systematic and repeatable methods
have been developed to apply PSMs within organizations, enabling PSM to provide
greater business value.

Specifically, PSM can be used to evaluate new tools and technologies. Using PSM
enables an organization to:

• Plan how a new technology might be applied
• Assess the costs and benefits of the new tool or technology
• Explore alternative approaches for applying the technology

Using PSM, an organization can answer the following questions before rather than
after they invest in the technology.

• What is the likely impact of applying new tools and technologies?
• What is the likely economic benefit or value of the tool or technology? What is

the ROI?
• When might the tool or technology be useful and when might it be useless?
• Under what conditions does the tool or technology perform best?
• What performance standards does the tool need to achieve in order to have a

positive return?
• Are there better ways to apply the tool?

The technology evaluated in this paper is an automated natural language require-
ments analysis tool (QuARS) [1]. The developers of this technology had recently
made significant breakthroughs in reducing costs and increasing the effectiveness of
this technology. Is the technology now “ready for prime time” on NASA projects?
This study seeks to address this question.

2 Background

In this study, we created a software process simulation model to study the impact of
the Quality Analyzer for Requirements Specification (QuARS). The process simula-
tion model allows us to conduct controlled experiments and answer various questions
before we deploy the tool on the actual software project. In the following section we
will provide background of both technologies.

2.1 Process Simulation Models (PSMs)

Process Simulation is a commonly used technique to improve management decisions
including:

• Strategic management,
• Process planning,

 Evaluating the Impact of the QuARS Requirements Analysis Tool Using Simulation 309

• Project tracking and control,
• Process improvement and technology adoption,
• Process understanding
• Training and learning [2].

Raffo [3] used process simulation models to justify process improvement initia-
tives, to predict the impact of process changes before they are implemented and to
assess multiple process alternatives under various business case scenarios. PSM also
helps software organizations achieve higher CMMI levels. Organizations can use
PSM to establish a framework for selecting core process and product metrics [4].
Raffo et al. [5] showed that PSM can provide a quantitative assessment of the risk or
uncertainty associated with various process alternatives and support quantitative pre-
diction of project level performance in term of cost, quality and schedule. Moreover,
the results of PSM are very useful in determining financial performance measures
such as Return on Investment, Net Present Value, etc [6]. The use of PSM led Leon
[7] to new understandings of the software requirement elicitation process. Pfahl [8]
evaluated applications of PSM in software project management education.

One of the advantages of process simulation models is their ability to represent
software development processes at both the mirco and macro process levels. Process
simulation models (PSMs) can be used to represent software development projects
from narrowly focused portions of the software development life cycle to long-term
product evolutionary models [2].

Two process simulation paradigms, discrete event simulation (DES) and system
dynamics (SD), have been widely adopted by researchers. While the DES paradigm
describes software development processes as sequences of discrete activities, the
system dynamics paradigm describes the interaction between project factors in the
form of levels and flows. Melis [9] developed a discrete model to evaluate the effec-
tiveness of Extreme Programming process. Abdel-Hamid and Madnick [10] used a
SD model to demonstrate why managers underestimate the resources required for a
software project. Madachy [11] developed a SD model to study the impact of inspec-
tion-bases processes. Smith [12] developed an agent-based model to study open
source software evolution. Martin and Raffo [13] developed a hybrid model that
takes advantage of both the discrete event and system dynamics paradigms. The
hybrid model can represent many different aspects of software development processes
and help answer questions that are important for management decision making. This
hybrid modeling paradigm has been elaborated by Setamanit, Raffo and Wakeland to
evaluate issues related to Global Software Development [14].

In this study, we use a discrete event simulation model to address technology adop-
tion questions. The PSMs can help software managers answer several tool adoption
questions such as:

• Would it be better to build test suite in-house or to buy an existing one?
• Is the new tool worth the cost? This includes purchase, maintenance, training,

process changes and other associated implementation costs.
• What level of performance does the tool need to achieve in order to be worth-

while?

310 D.M. Raffo et al.

These questions are very important to help management decide whether or not to
adopt the technology. The process simulation is a cost effective approach that helps
answer these questions. Without simulation, software organizations would have to
take a risk in adopting the technology and learn about the impact from pilot studies
and controlled experiments which can consume a lot of time and resources. Using
PSMs, we can conduct virtual controlled experiments on a software project. By in-
corporating software metrics data, PSMs allow modelers to perform various analyses
such as sensitivity analysis, design of experiments [15, 16] and statistical comparison
of various software process configurations. The results of these analyses can provide
useful information for management decision making.

2.2 The QuARS: Quality Analyser for Requirements Specification

Software requirements-related defects are the most common and most expensive type
of defects to correct. Depending on when this class of defect is found, the cost to find
and fix these defects can range between 50-100 times the effort/cost it would have
taken to correct the defect in the requirements phase [17]. Therefore, it is crucial to
detect as many requirements defects as early as possible. The fact that requirements
documents are commonly written in natural language, make them prone to errors.
There are several human intensive defect detection techniques such as inspection-base
techniques and scenario-based review techniques. However, these techniques can be
expensive and time consuming.

The Quality Analyser for Requirement Specification (QuARS) is an automated
natural language requirements analyzer tool that identifies defects in requirements.
QuARS performs expressive analysis on requirements documents and indicates poten-
tial defects based on the quality model described in [1]. A drawback of automated de-
fect detectors is the possibility of detecting false positives. After analyzing a natural
language requirements document, QuARS requires the user to review the all the faults
found and to distinguish between real defects and false positives. The metrics generated
by QuARS are a readability score and a defect density score for the document.

Several empirical studies have been done on QuARS. Ferguson [18] conducted a
study on QuARS at the NASA Independent Verification and Validation (IV&V) facil-
ity. The results indicated cause and effect relationships between expressive defects in
requirements and the final software product. Lami [19] applied QuARS to analyze
NL requirements in a commercial software project. The results showed that QuARS
takes less time and finds more defects of certain types than human review. However,
the cost of correcting false positives was also very high.

3 GPSM-Based Evaluation Approach

The objective of this case study is to use a generalized process simulation model
(GPSM) [20] to evaluate the impact of implementing QuARS.

3.1 The IEEE 12207 Model

The specific model used in this study is a model of the IEEE 12207 standard for soft-
ware lifecycle process [21] as shown in Figure 1. We extended the model described

 Evaluating the Impact of the QuARS Requirements Analysis Tool Using Simulation 311

in [22] to perform this study. The model was further calibrated using NASA project
data and industry standard data from [23]. The IEEE 12207 Model consists of two
layers, 1) Development and 2) IV&V. The development layer represents the systems
and software lifecycle phases based on the IEEE 12207 standard. It is comprised of
nine phases. Each phase has one or more process steps in it. In total, there are 86
steps in the software development process. The IV&V layer represents the activities
carried out by external software auditors. This layer consists of five main IV&V
phases. Each phase is comprised of multiple IV&V activities that may be used to
verify and validate software artifacts from the corresponding software development
phases.

The results of this model were validated against the performance data from 12
large-scale NASA projects (with project size of 90 thousand lines of code (KLOC) or
higher).

Fig. 1. IEEE 12207 Process Simulation Model with IV&V Layer

In this case study, we consider using QuARS during:

1. Quality assurance (i.e. V&V1) activities within the project: applying QuARS
to analyze the System Requirements, Software Requirements, and then at both
phases.

2. IV&V activities outside of the project: applying QuARS at Concept Verifica-
tion, Requirements Verification, and then at both phases.

The key questions that we aim to answer are:

1. Does QuARS add value to the project?
2. Is QuARS more effective in V&V or IV&V mode?
3. What is the amount that the project should be willing to pay for QuARS?

The general method for using simulation to assess the impact of new technologies
on a project is similar to assessing the impact of a process change [24]. The first step
is to establish baseline model result. Then, we design each TO-BE process scenario

1 Verification and Validation (V&V) activities determine whether development products of a

given activity conform to the requirements of that activity, and whether the software satisfies
its intended use and user needs. This determination may include analysis, evaluation, review,
inspection, assessment, and testing of software products and processes.

312 D.M. Raffo et al.

and make appropriate changes to the model. After that, we run each TO-BE scenario
model and determine the change in performance and select the “best” process option.

3.2 QuARS Assumptions

To evaluate automated defect detection tools we consider following criteria 1) PD: the
probability of detecting faults, 2) Accuracy, 3) The cost of using the tool, and 4) the
probability of fault positives. We use data from [18, 19] to represent QuARS capa-
bilities. In addition to the empirical data, we also made several assumptions based on
the field study at commercial firm [18, 19] as well as at NASA as follows:

• QuARS productivity is 10,000 lines of code per person-hour.
• 37% of the requirements defects are QuARS detectable. QuARS defect detec-

tion rate is 100% for QuARS detectable defects.
• Employing QuARS improves the quality of the requirements document, thus the

defect detection capability at Requirements inspection improves by 5% to 15%
(min = 5%, max = 15%, mode = 10%) if the QuARS detected defects are cor-
rected prior to requirements inspection.

• The cost of training and associated software engineering process group (SEPG)
activities is 1 person-month.

Employing QuARS also provides benefits to other development phases besides the
Requirements phase as follows:

• Improves clarification of requirements, thus improves design productivity by
5% to 10%

• Improves Engineering design decisions, thus reduces the injection of design de-
fects by 5% to 10%

• Improves test planning and test case generation productivity by 10% to 20%
• Improves the quality of test cases, thus reduces the injection of test case defects

by 5% to 15%

4 Business Implications of QuARS

4.1 AS-IS Baseline Model Results

As discussed in the previous section, the IEEE 12207 process model baseline per-
formance was predicted in terms of effort (or cost), duration, and latent defects (or
delivered defects). The characteristics of the AS-IS model are as follow:

• The project is 100,000 lines of code.
• The industry standard data [23] were used for earned value (% effort allocated

for each activity) and defect detection rate.
• Organization specific data were used for productivity and defect injection rates.

The baseline performance for the AS-IS process (without using QuARS) is shown
in Table 1. Note that the data presented in this paper is marked to protect company
confidentiality.

 Evaluating the Impact of the QuARS Requirements Analysis Tool Using Simulation 313

Table 1. Baseline performance for the AS-IS process

Effort incl.
IV&V

Effort Rwrk_Efrt
IV&V
Effort

Duration Avg. Dur Crctd_Dfcts Ltnt_Dfcts

Mean 71,371.20 69,301.61 27,404.94 2,069.59 4,837.69 2,423.03 6,004.87 634.68
Std. Dev. 1,910.20 1,894.25 1,037.12 246.33 195.06 92.37 227.50 24.64

4.2 Scenario 1: Applying QuARS in V&V Mode at Different Phases

In this scenario, we made changes to the model to represent 3 configurations: 1a)
QuARS at System Requirements phase; 1b) QuARS at Software Requirements phase;
and 1c) QuARS at both phases. Figure 2 shows a flow chart of the AS-IS and TO-BE
processes for configuration 1a) QuARS at Systems Requirements phase.

Previous
Process
Steps

System
REQ

Analysis

System
REQ

Inspection

System
REQ

Rework

Next
Process
Steps

Previous
Process
Steps

System
REQ

Analysis

System
REQ

Inspection

System
REQ

Rework

Next
Process
Steps

AS-IS

TO-BE

Previous
Process
Steps

System
REQ

Analysis

System
REQ

Inspection

System
REQ

Rework

Next
Process
Steps

QuARS
System

REQ
Inspection

System
REQ

Rework

Previous
Process
Steps

System
REQ

Analysis

System
REQ

Inspection

System
REQ

Rework

Next
Process
Steps

QuARS
System

REQ
Inspection

System
REQ

Rework

Previous
Process
Steps

System
REQ

Analysis

System
REQ

Inspection

System
REQ

Rework

Next
Process
Steps

QuARS
System

REQ
Inspection

System
REQ

Rework

Fig. 2. Process Flow Chart for AS-IS and TO-BE Process – 1a) QuARS at Systems Require-
ments phase

We made changes to the model to represent each configuration, and then ran each
model for 30 runs. Based on consistency tests performed during model verification
and validation process, we found that with inherent variability in the model, 30 runs
were sufficient for the model to produce stable results. Table 2 shows the differences
of the model mean results from three configurations comparing to the AS-IS baseline
performance. Note that a positive value means improvement. For example, when
employing QuARS at System Requirements phase, the total effort (including IV&V
effort) reduced by 1,659.07 man-hours.

Table 2. Scenario 1 Performance Comparison to the Baseline

Comparison to Baseline
Effort incl.

IV&V
Effort Rwrk_Efrt

IV&V
Effort

Duration Avg. Dur Crctd_Dfcts Ltnt_Dfcts

1a) QuARS at Sys Req 1,659.07 1,669.63 1,311.82 -10.56 103.00 48.64 33.98 18.14
p value 0.00 0.00 0.00 0.87 0.05 0.05 0.56 0.00

1b) QuARS at Sw Req 5,141.86 5,127.99 4,778.59 13.87 377.28 71.50 -10.12 55.12
p value 0.00 0.00 0.00 0.83 0.00 0.01 0.86 0.00

1c) QuARS at Sys & Sw Req 5,267.99 5,284.64 4,925.64 -16.65 362.00 80.63 -9.89 58.54
p value 0.00 0.00 0.00 0.80 0.00 0.00 0.87 0.00

One can see that applying QuARS resulted in better overall project performance.
In all three cases, effort spent was lower; the duration was shorter; and the quality was
improved. The effort was improved because of the increase in productivity in

314 D.M. Raffo et al.

subsequent development phases as a result of better requirements document. In addi-
tion, QuARS allows us to detect and correct defects early in the process, which results
in lower rework cost. With better and clearer requirements, the quality of the overall
product also improved.

It is interesting note that applying QuARS at Software Requirements phase (1b)
yielded a more significant improvement than applying QuARS at System Require-
ments phase (1a). When applying QuARS at Software Requirements phase, the effort
decreased by almost 3,500 man-hours and the average number of latent defects re-
duced by more than double (37 defects), as compared to applying QuARS at System
Requirements phase. Applying QuARS at both phases resulted in marginal im-
provement on effort and quality; however, the duration was a bit longer than applying
QuARS only at Software Requirements phases.

Moreover, we experimented with the option of applying QuARS before or after re-
quirements inspection. Although we found that applying QuARS after requirements
inspection does improve the project performance as compared to the baseline, the
benefit of applying QuARS after a requirements inspection is 10% to 15% lower than
when applying QuARS before requirements inspection.

4.3 Scenario 2: Applying QuARS in IV&V Mode at Different Phases

For this scenario, we examined the impact of QuARS if we apply it during IV&V activi-
ties. Changes were made to the model to represent three different configurations: 2a)
QuARS at the Concept Verification phase; 2b) QuARS at the Requirements Verification
phase; and 2c) QuARS at both phases. Figure 3 shows flow charts of the AS-IS and
TO-BE processes for configuration 2b) QuARS at Requirements Verification phase.

Previous
Process
Steps

Traceability
Analysis

Next
Process
Steps

QuARS
Software

REQ
Inspection

Software
REQ

Evaluation

Timing
And

Sizing
Analysis

Interface
Analysis

System
Test Plan
Analysis

AS-IS

TO-BE

Previous
Process
Steps

Traceability
Analysis

Next
Process
Steps

Software
REQ

Evaluation

Timing
And

Sizing
Analysis

Interface
Analysis

System
Test Plan
Analysis

Fig. 3. Process Flow Chart for the AS-IS and TO-BE Process – 2b) QuARS at the Require-
ments Verification phase

We made changes to the model to represent each configuration, and then ran each
model for 30 runs. Table 3 shows the differences of the model mean results from
three configurations comparing to the AS-IS baseline performance.

 Evaluating the Impact of the QuARS Requirements Analysis Tool Using Simulation 315

Table 3. Scenario 2 Performance Comparison to the Baseline

Comparison to Baseline
Effort incl.

IV&V
Effort Rwrk_Efrt

IV&V
Effort

Duration Avg. Dur Crctd_Dfcts Ltnt_Dfcts

2a) QuARS at Concept V 1,448.16 1,679.42 1,321.83 -231.26 114.25 68.84 31.97 17.08
p value 0.00 0.00 0.00 0.00 0.01 0.01 0.59 0.01

2b) QuARS at Requirments V 2,427.46 2,717.04 2,340.55 -289.58 190.67 64.10 18.92 28.59
p value 0.00 0.00 0.00 0.00 0.00 0.01 0.75 0.00

2c) QuARS at both 2,899.94 3,373.50 2,975.94 -473.56 236.75 97.55 10.73 35.96
p value 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.00

Similar to scenario 1, applying QuARS in IV&V did improve project performance
as compared to the baseline model for all three configurations. However, the value of
QuARS as an IV&V tool is significantly less than the value of QuARS as a V&V
tool. The effort reduced by 2% to 4% when applying QuARS at IV&V mode, while
the effort reduced as much as 8% when applying QuARS at V&V mode. The reason
for this is that the secondary effects as discussed in Section 3.2 were not experienced
by the project when employing QuARS in IV&V mode.

From the results of these two scenarios, we can conclude that QuARS did add
value to the project by reducing effort, shortening project duration, and improving
quality. However, the phase (location) that QuARS will be applied is very important.
The degree of value added depends on the location that QuARS is applied. Applying
QuARS at V&V model offers more benefits that applying QuARS at IV&V mode.
Applying QuARS at both Systems and Software Requirements phases yield the high-
est benefit, but the actual sweet spot is to apply QuARS at the Software Requirements
phase. In addition, QuARS should be applied before the Requirements inspection in
order to capture the most benefit.

Although the analysis above concluded that QuARS does add value to the project,
it didn’t take into account the cost of purchasing QuARS. If the cost of QuARS ex-
ceeds its benefits, it will not be worthwhile to implement QuARS. The next step is to
calculate the maximum price that the project would be willing to pay for QuARS.
The analysis to answer this question is provided in the next section.

4.4 Financial Analysis

In order to weigh the projected benefits received from QuARS against the cost of
implementing the tool, the first thing we need to do is to convert the project perform-
ance measures (in terms of effort, duration, and quality) to the financial measures. In
addition, when evaluating future benefits, it is crucial to consider the timing of the
benefits (i.e. when will we realize the benefits). Therefore, we will use present value
(PV) based method to perform the financial analysis for this case study. Detailed
information about financial calculation for software process improvement business
case can be found at [25]. There are several key parameters required for the analysis
as follows:

• The organization’s internal investment rate cut-off (a.k.a. hurdle rate) is 20%
annually.

• The cost of development staff is $100 per hour. The cost of IV&V staff is also
$100 per hour.

316 D.M. Raffo et al.

• The cost to correct latent defects after release is 1.5 person-month (or $25,500
per defect).

• There are 170 work hours per month.
• Implementation costs (QuARS costs) are assumed to be incurred at time = 0,

development costs can be assessed as a one time cash flow when the project is
completed (time = duration), costs to fix latent defects occurs at 1 years after the
project is completed (time= duration + 12 months).

• There is no benefit gain if the project completes early. Note that this is specific
to the organization. Other organizations may gain benefit if the software is re-
leased early (i.e. increase in market share/revenue).

From the information above, we can write the Net Present Value (NPV) equation
as follows:

NPV = IC + SE/(1+r/12)^Duration + SRW/(1+r/12)^Duration + 12 (1)

Where:

 IC = Implementation cost (value of QuARS in our case)
 SE = Saving in Effort
 r = Organizational internal investment rate cut-off
 Duration = Project duration (month)
 SRW = Saving in rework cost

If NPV > 0, the project will benefit from using the tool. If NPV < 0, project will
lose money when using the tool. To find the maximum amount that the project should
be willing to pay for the tool, we want to find IC that will make the NPV equal to 0.
Therefore, we assume that NPV = 0 and then solve for IC. Table 4 shows the value of
QuARS for different scenarios.

Table 4. Value of QuARS

Mean Std Dev
1a) QuARS at Sys Req $329,350.06 41,623.20
1b) QuARS at Sw Req $1,012,909.55 53,732.26
1c) QuARS at Sys & Sw Req $1,094,509.64 68,700.92
2a) QuARS at Concept V $313,387.99 32,630.94
2b) QuARS at Requirments V $511,362.33 39,002.30
2c) QuARS at both $638,714.67 50,579.24

Config.
QuARS Value

The probability that the QuARS value is higher than $0 is 100%, which indicates
that QuARS helps improve project performance. The probability that the QuARS
value is higher than $100,000 is also 100%. This suggests that if the total cost of
QuARS implementation is $100,000, the project would gain significantly (between
$213,388 and $994,510) should it decide to implement QuARS.

Note that the key parameters provided at the beginning of this section are similar to
values commonly found in the industry. The advantage of simulation is that any of
these numbers could be changed to reflect a different organization/situation. For ex-
ample, if the project was performed offshore where the programmer wages are lower,
the value of QuARS (benefit from implementing QuARS) would be lower. We found

 Evaluating the Impact of the QuARS Requirements Analysis Tool Using Simulation 317

that if the cost of staff was reduced by 50%, the value of QuARS would range be-
tween $264, 828 and $928,408.

We also varied key financial parameters such as hurdle rate, cost of staff, and cost
to correct latent defects to evaluate its impact on the value of QuARS. In general, the
value of QuARS decreases when hurdle rate increases, cost of staff decreases, or cost
to correct latent defect decreases. In addition, we also conducted sensitivity analysis
on important QuARS parameters provided in Section 3.2: QuARS Assumptions
include: percent of the requirements defects that are QuARS detectable, QuARS
effectiveness (detection rate), and percent improvement on Requirements inspection
detection capability. However, in the interest of space, these analyses have not been
included in this paper.

5 Conclusion

The primary benefits of using Software Process Simulation Models include: (a) selec-
tion of the best possible development process for specific situations and circum-
stances, (b) improved project planning and execution, (c) provision for an objective
and quantitative basis for project decisions, (d) reduced risk when implementing proc-
ess changes, (e) enhanced understanding of possible outcomes in complex processes
and projects.

Software process simulation is a powerful tool for conducting what-if analysis.
This can help project managers evaluate the impact of process changes or new tool
implementations. In this paper, we showed how simulation can be used to evaluate a
new technology, QuARS (a Quality Analyser for Requirements Specification). In
addition to assessing the value of QuARS in general, we also used simulation to de-
termine the impact of adding QuARS at different phases in the project. This analysis
can help project managers identify the optimum point in the process to apply QuARS
to capture full potential benefits. We found that, in general, applying QuARS resulted
in better overall project performance. However, the degree of the value added de-
pends on the insertion point and step order in which QuARS is applied. Applying
QuARS at the in-project V&V level offers more benefits than applying QuARS ex-
ternally to the project in IV&V mode. Applying QuARS at both the Systems and
Software Requirements phases yields the highest benefit, but the actual sweet spot is
to apply QuARS at the Software Requirements phase. In addition, QuARS should be
applied before the Requirements inspection in order to capture the most benefit. The
financial analysis presented in this paper shows how one can translate the impact of a
new technology into financial value, which makes it easier to make a decision as to
whether to acquire a new tool.

When using simulation to assess a new technology, we can:

• Identify the conditions where a new technology would be useful and where it
would be useless

• Identify the optimum point in the process to employ new tool
• Assess the risks associated with a new technology
• Establish performance benchmarks or criteria that the vendor of a new tool

would have to achieve in order for the organization to consider investing and
adopting a new tool or technology.

318 D.M. Raffo et al.

References

1. Lami, G., Gnesi, S., Fabbrini, F., Fusani, M., Trentanni, G.: An Automatic Tool for the
Analysis of Natural Language Requirements. International Journal of Computer Systems
Science and Engineering, Special Issue on Automated Tools for Requirement Engineering
20 (2005)

2. Kellner, M.I., Madachy, R.J., Raffo, D.M.: Software Process Simulation Modeling: Why?
What? How? Journal of Systems and Software 46 (1999) 91-105

3. Raffo, D.: Predicting the Impact of potential process changes: A quantitative approach to
process modeling. In: Emam, K.E., Madhavji, N.H. (eds.): Elements of Software Process
Assessment and Improvement. IEEE Computer Soc. Press, Los Alamitos, CA (1999)

4. Raffo, D., Harrison, W., Vandeville, J.: Coordinating models and metrics to manage soft-
ware projects. Software Process Improvement and Practice 5 (2000) 159-168

5. Raffo, D.M., Vandeville, J.V., Martin, R.H.: Software process simulation to achieve
higher CMM levels. Journal of Systems and Software 46 (1999) 163-172

6. Raffo, D., Settle, J., Harrison, W.: Estimating the Financial Benefit and Risk Associated
with Process Changes. First Workshop on Economics-Driven Software Engineering Re-
search, International Conference on Software Engineering (ICSE 99), Los Angeles, Cali-
fornia (1999)

7. Osterweil, L.J., Sondheimer, N.K., Clarke, L.A., Katsh, E., Rainey, D.: Using Process
Definitions to Facilitate the Specification of Requirements. Department of Computer Sci-
ence, University of Massachusetts, Amherst, MA 01003 (2006)

8. Pfahl, D., Laitenberger, O., Dorsch, J., Ruhe, G.: An Externally Replicated Experiment for
Evaluating the Learning Effectiveness of Using Simulations in Software Project Manage-
ment Education. Empirical Software Engineering V8 (2003) 367-395

9. Melis, M., Turnu, I., Cau, A., Concas, G.: A Software Process Simulation Model of Ex-
treme Programming. The 6th International Workshop on Software Process Simulation and
Modeling, St. Louis, Missouri (2005)

10. Abdel-Hamid, T.K.: Dynamics of software project staffing: A system dynamics based
simulation approach. IEEE Transactions on Software Engineering 15 (1989) 109-119

11. Madachy, R.J.: System dynamics modeling of an inspection-based process. (1996)
376-386

12. Smith, N., Capiluppi, A., Fernández-Ramil, J.: Agent-based simulation of open source
evolution. Software Process: Improvement and Practice 11 (2006) 423-434

13. Martin, R.H., Raffo, D.: A model of the software development process using both continu-
ous and discrete models. Software Process: Improvement and Practice 5 (2000) 147-157

14. Setamanit, S., Wakeland, W., Raffo, D.: Using Simulation to Evaluate Global Software
Development Task Allocation Strategies. Special Issue on Software Process, Software
Process: Improvement and Practice (Forthcomming)

15. Wakeland, W.W., Martin, R.H., Raffo, D.: Using design of experiments, sensitivity analy-
sis, and hybrid simulation to evaluate changes to a software development process: a case
study. Software Process: Improvement and Practice 9 (2004) 107-119

16. Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis. The McGraw-Hill Compa-
nies, Inc., New York (2003)

17. Leffingwell, D., Widrig, D.: Managing software requirements: a unified approach. Addi-
son-Wesley Longman Publishing Co., Inc. (2000)

18. Ferguson, R.W., Lami, G.: An Empirical Study on the Relationship between Defective
Requirements and Test Failures. the 30th IEEE-NASA Annual Software Engineering
Workshop (SEW-30) IEEE Computer Society Press, Columbia, MD U.S.A. (2006)

 Evaluating the Impact of the QuARS Requirements Analysis Tool Using Simulation 319

19. Lami, G., Ferguson, R.W.: An Empirical Study on the Impact of Automation on the Re-
quirements Analysis Process. Journal of Computer Science and Technology (JCST)
(Forthcomming)

20. Raffo, D., Nayak, U., Wakeland, W.: Implementing Generalized Process Simulation Mod-
els. The 6th International Workshop on Software Process Simulation and Modeling, St.
Louis, Missouri (2005)

21. IEEE/EIA 12207.0-1996 IEEE/EIA Standard Industry Implementation of International
Standard ISO/IEC 12207: 1995 (ISO/IEC 12207) Standard for Information Technology
Software Life Cycle Processes. IEEE/EIA 12207.0-1996 (1998) i-75

22. Raffo, D., Nayak, U., Setamanit, S.-o., Sullivan, P., Wakeland, W.: Using Software Proc-
ess Simulation to Assess the Impact of IV&V Activities. Proceeding of the 5th Interna-
tional Workshop on Software Process Simulation and Modeling (ProSim'04), Edinburgh,
Scotland (2004)

23. Jones, C.: Applied software measurement: assuring productivity and quality. McGraw-
Hill, Inc. (1991)

24. Raffo, D., Wakeland, W.: High Value Added Ways to Apply Process Simulation with Or-
ganizations. Software Engineering Institute, Carnegie Mellon University (Forthcoming)

25. Harrison, W., Raffo, D., Settle, J., Eickelmann, N.: Technology Review: Adapting Finan-
cial Measures: Making a Business Case for Software Process Improvement. Software
Quality Control 8 (1999) 211-231

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 320–331, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Framework for Adopting Software Process
Simulation in CMMI Organizations

He Zhang1,2, Barbara Kitchenham2, and Ross Jeffery1,2

1 School of Computer Science and Engineering, UNSW
2 National ICT Australia

{he.zhang,barbara.kitchenham,ross.jeffery}@nicta.com.au

Abstract. The Capability Maturity Model Integration (CMMI)1 has become
very influential as a basis for software process improvement. It is accepted that
process maturity is associated with better project performance and organiza-
tional performance. Software process simulation is being applied to the man-
agement of software projects, product life cycles, and organizations. This paper
argues that the successful adoption of one particular simulation paradigm to a
large extent depends on an organization’s capability maturity. We investigate
four typical simulation paradigms and map them to their appropriate CMMI
maturity levels. We believe that an understanding of these relationships helps
researchers and practitioners in implementing and institutionalizing process
simulation in software organizations.

Keywords: CMMI, process simulation and modeling, process improvement.

1 Introduction

Process simulation methods were fully introduced to software engineering by Abdel-
Hamid's [1] and others’ efforts in the late 1980s. However, in our experience of Aus-
tralian software industry, these methods are seldom adopted in practice. One possible
reason might be the lack of guidance for selecting and adopting the appropriate simu-
lation and modeling paradigms in a specific organization’s context. This paper aims to
stimulate research in this important area.

CMM(I)-based process improvement has been discussed for many years in the com-
munity of software process simulation and modeling. For instance, Christie [2] argues
that CMM-based process improvement can benefit from process simulation, and that
simulation can help to tackle different questions on CMM levels. However, he did not
distinguish the different simulation techniques in his discussion. Raffo et al. [3] further
suggest that process simulation serves as organization’s strategy for achieving a higher
process capability and moving to higher CMM levels. However, there is no ‘one-size-
fits-all’ simulation solution for all organization contexts, in particular organizations at
different CMMI maturity levels. The selection of a suitable process simulation paradigm
is the first necessary step to realize the value of simulation for software organizations.
Unfortunately, there is a lack of the generic guidance on how to select the appropriate

1 CMM and CMMI are service marks of SEI, Carnegie-Mellon University.

 A Framework for Adopting Software Process Simulation in CMMI Organizations 321

simulation paradigm(s). One possible problem is applying purely quantitative simula-
tions for the organizations at lower maturity levels. In contrast to most previous dis-
cussions focusing on the simulation’s positive contributions on CMM-based process
improvement, this paper argues that the adverse effects can also occur. We propose a
framework to support selection of the appropriate simulation paradigms by mapping
selected process simulation techniques to their related CMMI levels. This provides
general guideline for the adoption of process simulation in software organizations.

Section 2 discusses the scope of our proposed framework, and introduces the re-
lated concepts of process simulation and CMMI. We explain the framework and jus-
tify the mapping across the maturity levels in Section 3. It is followed by discussion
of some associated issues (Section 4). Finally, Section 5 presents our conclusions and
plans for future work.

2 Background and Motivation

When a software organization achieves a particular CMMI maturity level, it can be
assessed as capable to adopt particular simulation paradigm(s); on the other hand,
maturity levels are static points when introducing new simulations, and the adoption
facilitates the process of improvement to the next higher level. The purpose of this
framework is to help organizations maximize the benefits gained from process simu-
lation; and use the appropriate paradigm(s) needed to achieve higher maturity levels.

2.1 Process Simulation Modeling

Scope. Kellner et al. present a wide variety of reasons for undertaking simulations of
software process models [4]. Primarily, process simulation is an aid to decision
making. They identified six categories of purposes: (1) strategic management; (2)
planning; (3) control and operational management; (4) process improvement and
technology adoption; (5) understanding; and (6) training and learning. We note that
the last two objectives can benefit from all simulation paradigms no matter what
maturity level the organization is on. For example, even a Level 1 organization can
apply a role-playing simulation game, and gain insight from it. However, such
application is not the case of simulation in support of the real process in a practical
situation. The framework of this paper focuses on purposes (1) through (4).

Paradigms. We reviewed the software process simulation models published in
ProSim2 special issues since 1998, and selected two of the most popular simulation
techniques for our framework: System dynamics (SD, 54%) and Discrete-event
simulation (DES, 27%). Another reason for selecting the approaches is that they
represent two different simulation approaches. The former is the widely applied
continuous simulation paradigm which captures higher level project or product
considerations and shows how feedback loops connect a variety of business
characteristics. In contrast, discrete simulation is the modeling of systems in which
the state variable changes only at a discrete set of points (events) in time [5]. It is

2 International Workshop on Software Process Simulation Modeling.

322 H. Zhang, B. Kitchenham, and R. Jeffery

excellent at capturing well-defined process tasks, incorporating, queuing and
scheduling considerations.

However, both methods are purely quantitative approaches for modeling and simu-
lating systems, and organizations at lower ends of CMMI lack the ability to obtain
major benefits from these simulations (in-depth discussion in Section 3). Therefore,
the framework must include two newly introduced simulation paradigms: Qualitative
simulation and Semi-quantitative simulation. Table 1 presents their relationships.

Table 1. Selected simulation paradigms

 Continuous Discrete

System Dynamics Quantitative Discrete-event Simulation
Semi-quantitative Simulation

Qualitative
Qualitative Simulation

Qualitative simulation modeling reflects the systems in the real world at an abstract
level. Fewer assumptions are required than for purely quantitative approaches. The
outputs generated by Qualitative simulation are all the possible behaviors of the sys-
tem, whose states are described by qualitative landmarks, instead of numeric values.
Some initial ideas regarding the application of qualitative modeling to software engi-
neering were discussed by Suarez et al. [6], however, the first major example of its
use was Ramil and Smith’s study of software evolution [7].

As an extension of Qualitative simulation, Semi-quantitative simulation focuses on
the use of bounding intervals to represent partial quantitative knowledge [8]. This
paradigm provides a seamless transition between purely qualitative and quantitative
approaches. Our previous work introduced semi-quantitative approach by developing
a qualitative model of the software staffing process with quantitative constraints [9].

2.2 CMMI

As the successor of CMM, CMMI describes the practices for software process
change, and frameworks for measuring the compliance of organizations. CMMI
selects only the most important topics for process improvement and then groups those
topics into "areas". It represents ten years of lessons learned from many thousands of
external and internal consultants, based on applying continuous improvement to
CMM itself [10].

Representation. Unlike its predecessor, CMMI offers two representations, i.e. staged
models for assessing organizational maturity and continuous models for measuring
process capability. The main difference between maturity levels (MLs) and capability
levels (CLs) is the representation they belong to and how they are applied. Table 2
shows the maturity levels of staged representation [11, 12]. We choose the staged
representation for our framework for the following reasons:

 A Framework for Adopting Software Process Simulation in CMMI Organizations 323

− It provides a recommended path of improvement evolution (Fig. 1) for the entire
organization based on the last decade's best practices.

− It allows comparisons across organizations by using appraised maturity levels.
− The single rating can be used as the indicator of the organization's overall maturity

level, and provides an easy mapping to simulation paradigms.
− It provides a smooth migration from CMM to CMMI.

Table 2. CMMI Staged representation

Maturity
Level

Staged Representation
Maturity Levels

1 Initial

2 Managed

3 Defined

4 Quantitative Managed

5 Optimizing

 CL1 CL2 CL3 CL4 CL5

ML2
PAs

Stage 1

ML3
PAs Stage 2

ML4
PAs Stage 3

ML5
PAs

Stage 4

Fig. 1. Capability profile for maturity levels

Process Areas. CMMI contains 25 process areas (PAs) and 185 specific practices
(SPs) grouped into four categories according to their scopes (Fig. 2). Project Man-
agement process areas consist of project management activities related to planning,
monitoring, and controlling the project. Process Management process areas provide
the organization with capability on cross-project activities related to defining, deploy-
ing, implementing, monitoring, appraising, measuring, and improving processes.
Engineering process areas cover product development and maintenance activities
shared across engineering disciplines. They define the product development processes
rather than discipline-specific processes (such as software engineering). Since the
Support process areas address processes that are used in the context of performing
other process areas [11, 12], the first three process area groups are the main aspects
considered in our framework at current stage.

Practices. The required component of the CMMI models is the "goal" that represents
a desirable end state, and indicates that a certain degree of project and process control
has been achieved. A specific goal (SG) is unique to a single process area; in contrast,
a generic goal (GG) may apply across all of the process areas. Therefore, the
proposed framework focuses on specific goals and specific practices, which represent
the “expected” means of achieving the goal, and their different bias at maturity levels.
We calculated the number of specific practices applied to each maturity level and
categorize them into process area groups (Fig. 2). Although the allocated effort varies
across the practices, and even for the same practice performed among different
software organizations, this comparison generally illustrates the emphasis of
improved process areas on each maturity level.

324 H. Zhang, B. Kitchenham, and R. Jeffery

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Support 19 12 0 5

Engineering 5 41 0 0

Project Management 31 33 8 0

Process Management 0 19 5 7

ML2 ML3 ML4 ML5

Fig. 2. Allocation of specific practices across maturity levels

3 Mapping Framework

Simulation models may be mixed, both discrete and continuous. The choice of
whether to use a discrete or continuous (or mixed) simulation model is a function of
the characteristics of the system and the objective of study [5]. For a software organi-
zation, CMMI provides an assessment framework for the organization’s capability
(i.e. characteristics of the system), and the target of process improvements (which is
one of possible objectives of study).

As CMMI depicts a progressive path to achieve continuous process improvement,
the adoption of process simulation paradigms depends on the evolution of organiza-
tion’s capability. The mapping is implemented by analyzing the characteristics of soft-
ware organization and the practices introduced at each maturity level, and comparing
with the inherent capability of each simulation paradigm. We also provide simulation
models of one well-defined software process as an example for each transition.

3.1 Overview

The introduction and adoption of the process simulation paradigm in an organization
is also a process, rather than a single point of CMMI assessment. Thus simulations are
normally introduced between two adjoining CMMI maturity levels (Fig. 3).

Along with the evolution of capability maturity, the organization can provide more
precise process information with richer details. On the other hand, the simulation
paradigm introduced at higher maturity level requires more specific, lower level, and
quantitative information about specific software processes. This framework visualizes
an evolution path of simulation paradigms for CMMI organizations, i.e. from qualita-
tive to quantitative, from continuous to discrete, then to hybrid (see Section 3.6).

 A Framework for Adopting Software Process Simulation in CMMI Organizations 325

Fig. 3. Framework of adopting process simulation modeling in CMMI organizations

3.2 Initiating at ML1

At the entry level, software processes are performed in a chaotic and unstable organ-
izational environment. “Maturity level 1 organizations are characterized by a
tendency to over commit, abandon processes in the time crisis.”[12] Given a poorly-
defined process, significant uncertainty and high risk associated within such situation,
project success and process performance can not be predicted quantitatively. Because
of the large variance and contingency of the development behaviors, the organization
is unable to repeat their past success.

Although it is the ad-hoc level and no stable processes are followed in organiza-
tion, some qualitative disciplines still work (e.g. Brooks’ Law and defect amplifica-
tion across development phases). Qualitative assumptions can be abstracted from
these disciplines, corresponding to general knowledge about the software develop-
ment process. A Qualitative Simulation model can be then developed based on these
qualitative assumptions.

Example. The software process focusing on staffing level is modeled and simulated
as an example for each transition in this paper. Brooks’ Law might be the most well-
known statement about the software staffing problem. It argues “adding manpower to
a late software project makes it later” [13], and has a negative impact on software
development productivity. Our previous research developed a qualitative simulation

326 H. Zhang, B. Kitchenham, and R. Jeffery

model to examine Brooks’ law [14]. This model is built on ten basic qualitative
assumptions of the software staffing process, such as “adding more people to a project
results in a larger communication overheads”, and “new employees’ productivity is
initially lower than experienced staff’s productivity”. The qualitative model generates
112 possible behaviors to describe the staffing process. Even without quantitative
information, the simulation results can justify that under some scenarios adding more
people helps the project complete earlier than the original schedule.

3.3 Transitioning from ML1 to ML2

In progressing to ML2, organizations start to apply the generic and specific practices.
As illustrated in Fig. 2, over 55% specific practices implemented in this transition
concentrate on adopting “basic” project management methodologies (process areas).
On the other hand, no specific practice of process management is introduced until
achieving ML2. Hence, the main improvements are expected on the project or man-
agement level, not the process level. For example, the estimates of attributes of the
work products are established and maintained (PP-SP1.3); based on estimation ration-
ale, project effort and the cost for work products are established (PP-SP1.4); project
risks are identified and analyzed (PP-SP2.2); the actual values of the project parame-
ters are monitored against the project plan (PMC-SP1.1); the project’s progress, per-
formance and issues are periodically reviewed (PMC-SP1.6), etc.

However, quantitative project management processes must be adopted progres-
sively. It takes time not only to accumulate sufficient project history data, but to spec-
ify how measurement data will be obtained, stored, analyzed, and reported (MA-
SP1.3/1.4). This implies there might be significant variance, even inconsistency, in
the data collected during this transition. In addition, it can be noted in Fig. 1 that all
adopted process areas at current stage are targeted at capability level 2, other than
CL3 required for higher maturity levels. This implies only primary quantitative pro-
ject management capability is expected at maturity level 2.

Obviously, the discrete paradigm is not appropriate for simulation in this transition,
because of the absence of the specific practices of process management. In contrast,
the continuous paradigms are more suitable for capturing the project or product char-
acteristics at high level. However, in light of the lack of formal and complete history
data from ML1, the estimates of project metrics are mainly based on project man-
ager’s personal experience and incomplete history information. Although quantitative
simulation can cope with the uncertainty with stochastic methods, e.g. Monte Carlo
simulation, unfortunately, the number of uncertain factors may be too many to handle
in this way, and the statistical distributions are unknown or unstable at this stage.
Therefore, blindly adopting a purely quantitative simulation within such context may
result in over-optimistic or -pessimistic predictions, and may discourage the imple-
mentation of process simulation due to unreasonable expectations.

As the extension of Qualitative simulation, Semi-quantitative Simulation provides a
seamless transition between qualitative and purely quantitative approaches. It can be
introduced as a lens with a smooth zoom to match the organization’s immature but
continuously improved quantitative capability during this transition.

 A Framework for Adopting Software Process Simulation in CMMI Organizations 327

Example. The software staffing process model is extended with the quantitative
information in [9]. Because the uncertainty is still high at level 2, and only incomplete
historical project data is available, Semi-quantitative simulation assigns envelope
functions to the relations in the model, and value ranges to the inputs and its initial
state. When we apply stricter quantitative constraints, the simulation produces fewer
but more precise behaviors for the specific staffing process. Given the primary and
limited quantitative management capability (between ML1 and ML2), Semi-
quantitative simulation is able to provide the possible behaviors of development
process for decision-making while maintaining the integrity of the final solution.

3.4 Transitioning from ML2 to ML3

Once the organization achieves ML2, projects can be managed and a few successful
project management practices can be repeated. The next transition to ML3 will pro-
duce the most distinct improvements across the maturity levels, because over 55% of
all CMMI practices must be implemented successfully in order to reach ML3 (Fig. 2).
The main adopted process areas in this transition are Engineering (39%) and Project
Management (31.5%). The “advanced” project management practices (except “quan-
titative project management” processes) are introduced, such as to establish and main-
tain the project’s defined process (IPPD-SP1.1); to define the parameters used to
analyze and categorize risks and control risk management effort (RM-SP1.2).

System dynamics can be introduced during this transition for more precise man-
agement based on experience and knowledge. System dynamics is a dynamic feed-
back system, sometimes refined as a goal-seeking system. It is possible to study the
interaction of control policies, exogenous events and feedback structures producing
dynamic behavior, such as rise, drop or oscillation. System dynamics simulate the
software process as a set of performance indicators. Most of them are active during
the whole project or project phases. Although as one alternative solution beyond
ML2, the Semi-quantitative simulation offers the capability of purely quantitative
continuous simulation, here we prefer System dynamics for its wide application (the
most popular simulation paradigm applied in software process modeling).

Meanwhile, the organization starts to adopt the “basic” process management prac-
tices (for ML3), such as to establish and maintain the description of the process needs
and objectives for the organization (OPF-SP1.1); to establish and maintain the organi-
zation’s set of standard processes (OPD-SP1.1); to deploy organizational process
assets across the organization (OPF-SP1.1), etc. Thus, the organization can seldom
benefit from Discrete event modeling until ML3 when these practices are well defined
and implemented across the parts or the whole organization.

Example. Madachy developed a System dynamics model of the software staffing
process to examine the Brooks' Law [15]. He simplified Abdel-Hamid and Madnick's
model [1] by focusing on the assimilation procedure. The model is built using a set of
specific numeric values, which were selected from the literature or historical data of
company projects, to represent the relations in the model. Further, the process is
simulated with the data from specific projects as inputs. His model generates single
deterministic behavior through one simulation, and he analyzes the impact of different
staffing policies by comparing the numeric values describing the project states
through multiple runs.

328 H. Zhang, B. Kitchenham, and R. Jeffery

3.5 Transitioning from ML3 to ML4

When software processes are well-defined at ML3, Discrete event simulation can be
introduced (Fig. 2). A “defined process” clearly states: purpose, inputs, entry criteria,
activities, roles, measures, verification steps, outputs, and exit criteria [12]. The dis-
crete models are capable of capturing a well specified process, which is composed of
the above process elements. Discrete event simulation is suitable to model a queuing
system, which is observed by arrival rate, service time, queue capability and disci-
pline [5]. The entities will be moved from one queue to another during simulation.

Discrete event simulation is a typical method employed in stochastic queuing mod-
els. All pre-defined rules, such as arrival rate and service times, will be sampled from
the appropriate distributions. At ML3, the organization’s measurement repository has
been established and maintained (OPD-SP1.4), and the process asset library has been
established and maintained (OPD-SP1.5), etc. These practices provide the condition
for applying statistical methods and tailoring at the process level.

The maturity level 4 aims to achieve a “quantitatively managed process”. A critical
distinction between a well defined process and quantitatively managed process is the
predictability of the process performance. The latter implies using appropriate statisti-
cal techniques to manage process performance so that the future performance can be
predicted [11]. Discrete event modeling tries to answer “what if” questions. The
model is run many times with different input variables, entity allocations and statisti-
cal distributions. The results are collected and examined to support the “quantitative
project management” and improve the “organizational process performance”, which
contain the all (13) specific practices implemented at ML 4.

Example. Antoniol et al. develop three different queuing models, composed of nodes
assessment, technical analysis, enactment and unit testing, to model a software
maintenance process [16]. The stochastic discrete simulation was then used to
compute the required team size (for the different nodes of each model) under the
constraint to complete maintenance activities. In terms of the clearly defined process
(which is required for ML3 and above), several simulations were carried out with
changing team size (servers) for each node until all expected work packets were
processed by the deadline. Project staffing levels were then refined to reach a
compromise between personnel cost and waiting time.

3.6 Transitioning from ML4 to ML5

In our framework, typical simulation paradigms are introduced at ML1 through ML3
separately. Maturity level 4, where this transition starts, is characterized as a quantita-
tive managed project and process. All four process simulation paradigms have been
institutionalized in Level 4 organizations. They possess the competency to employ
these simulation paradigms separately. At ML4, Hybrid simulation is proposed by
combining multiple simulations and modeling techniques to help organization achieve
continuous optimization.

Hybrid modeling means not only employing the different modeling paradigms con-
currently, but developing an integrated model with modules created by different para-
digms. For example, when pilot process and new technology are considered to

 A Framework for Adopting Software Process Simulation in CMMI Organizations 329

implement process improvement (OID-SP1.3), Qualitative or Semi-quantitative mod-
eling may be employed for the specific module due to the limited knowledge about a
specific process; a combination of System dynamics and Discrete event simulation
can facilitate the causal analysis of selected defects and other problems (CAR-SP1.2)
on project and process levels, and further help the evaluation of changes on process
performance (CAR-SP2.2).

Example. As an example, Raffo and Setamanit develop a hybrid model that simulates
the global software development (GSD) process with the component of staffing
process [17]. The discrete event and system dynamic paradigms compliment each
other and together enable the construction of models that capture both the dynamic
nature of project variables and the complex sequences of discrete activities that take
place. At a high level, their model has three major components: DES sub-model, SD
sub-model, and Interaction Effect sub-model. The SD sub-model consists of a global
SD sub-model and a site-specific sub-model, which include Human Resources (HR)
modules. The modules deal with HR management, which involves hiring, training,
assimilation, and transferring workforce. Whereas the DES sub-models simulate how
tasks are allocated and specific activities are performed on site and global levels.

4 Discussion

This framework is not limited to organizations with CMMI certificates, but applies to
any software organization that operates at a particular CMMI level. CMMI is a
widely-accepted and easily-accessed maturity model. Our framework provides a gen-
eral and approximate guideline for selecting and adopting process simulation. An
organization can perform the self-assessment against the capability characteristics
described at CMMI maturity levels, and then select the suitable simulation(s).

Each process simulation paradigm involved in our framework can also be applied
at the maturity levels above its introduction level (Fig. 3). For instance, when a Level
5 organization plans to adopt a new technology or a new software process, Qualitative
simulation may help to gain insight in the implication of the change. As another ex-
ample, the success of a contemporary project might be better defined as a cube of
metrics than a single point [18]. Since semi-quantitative approach has the inherent
capability of coping with uncertainty in multi-dimensions, it can facilitate the deci-
sion-making under this condition even if for the organizations at higher levels [19].

Although Semi-quantitative simulation can predict process performance with value
ranges and possible behaviors, it does not imply imprecision, it allows continuous
refinement. The tolerance with its presentation guarantees the integrity of final solu-
tions. When a software organization employs Semi-quantitative approach, its maturity
level can be regarded as the capability to reduce the uncertainty by applying finer
value ranges and more realistic envelope functions to specify its software practice.

Besides the consideration of an organization’s maturity level, selection and adop-
tion of process simulation paradigms also depend on other constraints, such as exper-
tise with simulation and modeling tools, previous adoption experience. Meanwhile,
process simulation should focus on the needs of an organization in the context of its
business environment and the current needs of an organization and project. Transition

330 H. Zhang, B. Kitchenham, and R. Jeffery

between paradigms is not mutually exclusive for simulation paradigms, prior
techniques can be retained and optimized while introducing a new paradigm.

Along with the evolution of process capability, different process simulation para-
digms are introduced into organization incrementally and separately. In staged repre-
sentation of CMMI model, each maturity level forms a necessary foundation on which
to build the next level, so trying to skip maturity levels is usually counterproductive
[12]. Though organizations can introduce specific simulation paradigm at any time
they choose (even before they are ready for advance to the recommended maturity
level), similarly, skipping the adoption of simulation paradigm(s) for lower maturity
level(s) is not recommended in our framework. For example, some organizations
may try to collect the detailed process data for discrete event simulation, but they are
likely to suffer from the inconsistency in processes and measurement definitions.

At present, this framework includes only four typical process simulation para-
digms. However, its open structure provides a means to introduce other simulation
paradigms and locate them at appropriate positions in the future.

5 Conclusion

This paper has proposed a framework by analyzing the organizational characteristics
on CMMI maturity levels and requirements of the typical process simulation para-
digms, and establishing a suitable mapping between them. This framework provides
software organizations a primary guideline for selecting and adopting process simula-
tion by assessing their CMMI maturity levels. This research can be extended by:

− Analyzing the maturity requirements of other simulation paradigms (e.g. state-
based simulation) and including them at appropriate positions in the framework;

− Collecting more empirical evidence for validating and supporting our argument.

References

1. Abdel-Hamid, T.K. and S.E. Madnick, Software Project Dynamics: An Integrated Ap-
proach. 1991, Englewood Cliffs, N.J.: Prentice Hall.

2. Christie, A.M., Simulation in Support of CMM-based Process Improvement. Journal of
Systems and Software, 1999. 46(2/3).

3. Raffo, D.M., J.V. Vandeville, and R.H. Martin, Software Process Simulation to Achieve
Higher CMM Levels. Journal of Systems and Software, 1999. 46(2/3).

4. Kellner, M.I., R.J. Madachy, and D.M. Raffo, Software Process Simulation Modeling:
Why? What? How? Journal of Systems and Software, 1999. 46(2/3).

5. Banks, J. and J.S. Carson, Discrete-Event System Simulation. 1984, Englewood Cliffs, NJ:
Prentice-Hall.

6. Suarez, A.J., et al., Qualitative Simulation of Human Resources Subsystem in Software
Development Projects, in 16th International Workshop on Qualitative Reasoning. 2002:
Sitges, Spain.

7. Ramil, J.F. and N. Smith, Qualitative Simulation of Models of Software Evolution. Soft-
ware Process: Improvement and Practice, 2002. 7(3-4).

8. Kuipers, B., Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge.
1994: MIT Press.

 A Framework for Adopting Software Process Simulation in CMMI Organizations 331

9. Zhang, H. and B. Kitchenham, Semi-quantitative Simulation Modeling of Software Engi-
neering Process, in International Software Process Workshop/International Workshop on
Software Process Simulation and Modeling. 2006, Springer: Shanghai.

10. Kasse, T., Practical Insight into CMMI. 2004: Artech House.
11. CMMI Product Team, Capability Maturity Model Integration (CMMI-SE/SW/IPPD, v1.1),

Continuous Representation. 2002, Software Engineering Institute, Carnegie Mellon Uni-
versity: Pittsburgh, USA.

12. CMMI Product Team, Capability Maturity Model Integration (CMMI-SE/SW/IPPD, v1.1),
Staged Representation. 2002, Software Engineering Institute, Carnegie Mellon University:
Pittsburgh, USA.

13. Brooks, F.P., Jr., The Mythical Man-Month: Essays on Software Engineering. Anniversary
Edition ed. 1995: Addison-Wesley.

14. Zhang, H., et al., Qualitative Simulation Model for Software Engineering Process, in 17th
Australian Software Engineering Conference. 2006, IEEE: Sydney.

15. Madachy, R.J., Software Process Dynamics. 2005: IEEE Computer Society Press.
16. Antoniol, G., G.A. DiLucca, and M. DiPenta, Assessing Staffing Needs for a Software

maintenance Project through Queuing Simulation. IEEE Transactions on Software Engi-
neering, 2004. 30(1).

17. Raffo, D. and S. Setamanit, A Simulation Model for Global Software Development Project, in
International Workshop on Software Process Simulation and Modeling. 2005: St. Louis, MO.

18. Kerzner, H., Project Management: A Systems Approach to Planning, Scheduling, and
Controlling. 9th ed. 2006: John Wiley & Sons.

19. Zhang, H., B. Kitchenham, and R. Jeffery. Planning Software Success with Semi-
quantitative Reasoning. in 18th Australian Software Engineering Conference. 2007. Mel-
bourne: IEEE.

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 332–343, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Achieving Software Project Success: A Semi-quantitative
Approach

He Zhang1,2, Barbara Kitchenham2, and Ross Jeffery1,2

1 School of Computer Science and Engineering, UNSW
2 National ICT Australia

{he.zhang,barbara.kitchenham,ross.jeffery}@nicta.com.au

Abstract. Software process modeling and simulation hold out the promise of
improving project planning and control. However, purely quantitative ap-
proaches require a very detailed understanding of the software project and
process, including reliable and precise project data. Contemporary project man-
agement defines the success of project as a cube, rather than the traditional sin-
gle point, which allows the management of software project semi-quantitatively
with uncertainty-tolerance. This paper introduces semi-quantitative simulation
into software project planning and control, and develops a practical approach to
enhance the confidence of project success under uncertainty and contingency.
We illustrate its value and flexibility by an example implementation with a
simplified software process model.

Keywords: project planning, project control, process simulation, process mod-
eling, semi-quantitative simulation.

1 Introduction

Most current project planning methods use a target constrained by a single point in
multi-dimensional space (i.e. cost, quality, delivery date etc.) to define project suc-
cess. They handle uncertainty by using statistical techniques, such as Monte Carlo
simulation. However, due to the ever increasing complexity and diversity of innova-
tive projects, especially software projects, the definition of project success needs to
evolve. A contemporary success definition needs to be based on a range of values in
multi-dimensional space and requires project planning and control methods capable of
dealing with uncertainty and contingency.

Our previous work introduced semi-quantitative simulation as a novel technique
for software process modeling [1]. In this paper, we propose a new approach to soft-
ware project planning and control to fit the evolved definition of project success, and
introduce semi-quantitative simulation as the core paradigm to achieve this purpose.
We also provide an example to illustrate the application of this approach in practice.

Section 2 explains the motivation behind our approach, and briefly introduces the
concept of semi-quantitative modeling and simulation. We address the proposed pro-
ject planning and controlling approach in detail in Section 3. It is followed by an
example application with a semi-quantitative software process model in Section 4.

 Achieving Software Project Success: A Semi-quantitative Approach 333

We discuss various aspects of our approach in Section 5. Finally, Section 6 presents
our conclusion and proposes future work.

2 Motivation and Paradigm

2.1 Project Success Definition

Historically, the success of a software project has been defined as getting the job done
within the constraints of success metrics, such as time, cost, and quality. By using this
standard definition, success could be visualized as a single point on a success factor
grid [2]. However few projects, especially those requiring innovation (like software
projects), can achieve such an exact target.

In practice, few software projects are ever completed without tradeoffs or changes
to time, cost and quality. Software projects are sometimes considered successful when
the overruns are held to thirty percent or when the user only rejects a quarter of result
[3]. Hence, Kerzner argues in his “bible of project management” that project success
might still occur without exactly hitting a single point target [4]. In this regard, the
success of contemporary project might be better defined as a cube of project success
metrics, rather than a single multi-dimensional point (Fig. 1), and the project is
assessed as successful if it finishes at any point inside the cube.

Fig. 1. Project success: point or cube?

Traditional quantitative techniques usually support single point predictions of pro-
ject outcomes, rather than prediction of a range of possible outcomes. However, semi-
quantitative simulation has the inherent capability of reasoning with multiple value
ranges, and can facilitate decision-making based on project success factors repre-
sented as the acceptable ranges in multiple dimensions. This paper explains how
semi-quantitative models can support flexible project planning and control.

2.2 Software Project Planning and Control

Comprehensive planning and control are two of the most important aspects of any
project. In many case, development team simply failed to fulfill the original project
goal. It is rather the fault of inflated and unreasonable expectations, and poor control.

Research into the success of IS projects has identified project planning and control
as the second and third most important factors affecting project success [5]. It is also

334 H. Zhang, B. Kitchenham, and R. Jeffery

estimated that the planning process of project management should require approxi-
mately 35% of the project manager’s effort over the life of the project [6]. Project
planning and control require the project manager to think and perform through the
project, and remain focused on the final goal, i.e. project success, to be delivered.

In general terms, project planning is “to define and mature the project scope, de-
velop management plan, and schedule the activities and resources”; while project
control can be defined as “to compare actual performance with planned performance,
analyze variances, assess trends, and evaluate possible alternatives” [7]. Our approach
focuses on the quantitative management aspect of project planning and control.

2.3 Software Process Simulation Modeling

In the late 80’s, Abdel-Hamid and Madnick (AHM) proposed the use of quantitative
System Dynamics models to simulate the dynamic aspects of software projects [8].
Since then, other researchers have continued and extended their approach. Systems
Dynamics models are intended to provide a better understanding of project behavior
improving both project planning and project control.

Kellner et al. presented a wide variety of reasons for undertaking simulations of
software process models [9]. Primarily, process simulation is an aid to decision mak-
ing. They identified six categories of purposes: Strategic management, Planning,
Control and operational management, Process improvement and technology adoption,
Understanding, and Training and learning.

Unlike regression and mathematical models (e.g. COCOMO and SLIM), simula-
tion models provide a systematic view of software process, and predict development
performance with dynamic insights into the interdependencies among the elements of
the process. Successful cases can be found in research papers published in ProSim.1

2.4 Semi-quantitative Simulation

Before explaining our approach, we briefly introduce semi-quantitative simulation,
which is at the core of our approach. Semi-quantitative simulation is implemented in
two stages: qualitative reasoning and quantitative constraint propagation. The qualita-
tive model, which is implemented in QSIM [10], reflects system in the real world at
an abstract level. Fewer assumptions are required than for quantitative model.

In conventional quantitative models (e.g. Systems dynamics), a system is repre-
sented as a set of ordinary differential equations (ODEs), which involves quantitative
information. At a higher level, a qualitative differential equation (QDE) represents a
large set of possible ODEs, e.g. each M+ function represents the set of all monotoni-
cally increasing functions. When only incomplete knowledge is available, we can
replace ODEs with QDEs to represent the relationships and values of the variables
qualitatively [11]. One or more QDEs are the input constraint model(s) to QSIM.

Qualitative reasoning starts from a given initial system state. The output generated
by QSIM is a set of possible qualitative behaviors and each behavior consists of a
sequence of states. Each state in a behavior describes an open temporal interval or a
time point. These qualitative states present the system behavior from its initial state to
its final state graphically.

1 International Workshop on Software Process Simulation Modeling.

 Achieving Software Project Success: A Semi-quantitative Approach 335

Semi-quantitative simulation focuses on the use of bounding intervals to represent
partial quantitative knowledge. Q2 (Qualitative+Quantitative) is a basic semi-
quantitative reasoner implemented as an extension to QSIM. Given interval bounds of
landmarks and envelopes functions, its QDE defines a constraint-satisfaction problem
(CSP). A solution to CSP is an assignment of an interval to each landmark consistent
with the constraints. All possible qualitative behaviors are assigned to Q2, and then
restricted to the behaviors that are consistent with the quantitative constraints.

3 Managing Software Project Semi-quantitatively

3.1 Project Planning

The approach proposed here includes an iterative refinement method for software
project planning. However, the desired results may converge rapidly between the
adjoining iterations by using semi-quantitative simulation, if a realistic solution
existing. As illustrated in Fig. 2, this approach consists of five distinct steps: (1)
defining project success criteria; (2) tailoring and updating process model; (3) creat-
ing project element-impact table; (4) simulating and fine tuning; (5) updating
project plan.

Step 1: defining project success criteria. Unlike the following steps, the first step
of our approach emphasizes the business aspect instead of the technical aspect of
project planning. A variety of stakeholders may be involved in specifying the project
success criteria, i.e. defining the success cube. The output of this step is the project
success factor list, in other words, the metrics that are required to define the success
for this project, their relative importance, plus the value ranges accepted, which are
further visualized as project success cube.

Step 2: tailoring and updating project model. According to the nature of planned
project and the organizational context, a prototype process model is selected from the
literature or organization’s model repository. This topic is too complicated to be in-
cluded in this paper. The prototype model has to be tailored to fit the project’s charac-
teristics, and to be updated with its specific information.

Step 3: creating element-impact table. Not all elements can be changed in a proc-
ess model. Only tunable elements are identified in this step, and any value change to
these elements may induce changes in the project plan. These elements are further
prioritized in order of their importance and contribution to the success factors in ele-
ment-impact table, which also include their qualitative impact on success factors
when they are changing. Table 2 gives an example of the element-impact table.

Step 4: simulating and fine tuning. All outputs from the above three steps are used
as inputs to the semi-quantitative simulation (see below).

Step 5: updating project plan. When the simulation produces an acceptable predic-
tion of the project outcomes, the project plan will be updated according to this result.
In contrast, if there is a large deviation from the success criteria (such as “Impossible”
state in Fig. 3), the management should consider canceling the project.

336 H. Zhang, B. Kitchenham, and R. Jeffery

Inconsistent

Consistent

Project control plan
with check-points

Impossible

Good

Identify tunable
project elements

Project success
cube

Define project
success criteria

Tailor & update QSIM
process model

Run Semi-quant
simulation

Process model
repository

Identify impacts on
success

Prioritize project
elements

Estimate possible
initial scenario

Project element-
impact table

Compare result
with predefined

success?

Update project plan Make significant
changes or close

project

Project element-
impact table

Updated project plan
for decision-making

Possible
Fine-tune factor’s

value range

Step 3 Step 1

Step 2

Step 4

Step 5

Collect controlling
metrics

Step 6

Identify transition
points & critical times

Track project at
check-points

Compare state
with controlling

table?

Controlling metric
tables

Cut out extra branches &
update metric range

Identify reasons &
perform replanning

Step 7

Step 8data flow task sequence

Project Planning

Project Controlling

Fig. 2. Software project planning and controlling with semi-quantitative simulation

Simulation Iteration. The iteration procedure with semi-quantitative simulation can
be regarded as a planning optimizing phase to find a fitted solution (the project plan)
progressively for the predefined project success criteria. The generated results con-
verge rapidly if the success criteria are realistic.

The process model selected from Step 2 is coded with the specific element values
(ranges) and initial state of the project, and then is executed by QSIM, which gener-
ates all possible behaviors and predicts the project completion state, which is com-
pared with the success criteria (from Step 1). Either “Impossible” or “Good” results
cause an exit from the iteration procedure. Otherwise, if result is “Possible”, the val-
ues of tunable elements need to be refined in terms of the element-impact table cre-
ated in Step 3, and the next iteration is triggered with the updates.

Refinement Strategy. We present five types of project completion state (Fig. 3) con-
trasting with the predefined project success criteria. They are used as guidance to

 Achieving Software Project Success: A Semi-quantitative Approach 337

indicate if the simulation iteration needs to continue with further refinement or stop.
The strategies for other states, e.g. “Right-bottom”, can be deduced similarly.

The “Included” state indicates the predicted project completion falls into the suc-
cess cube. As the project success defined in Section 2, we can easily identify that it is
a “Good” plan for project success.

Fig. 3. Comparing simulation result vs. predefined success criteria

The counter part of “Included” state is “Including” state, which covers the success
area with extra space. This state means the “Possible” success, i.e. the project can
finish in success cube or outside. It needs to shrink with refinement.

Another state is that the project completion area locates at the “left-bottom” of the
success cube, but with overlap. It may be translated to “Good” for some metrics, such
as cost and schedule. But for some others, e.g. earned value and scope (functionality),
the overlap only implies the “Possible” success, and then the iteration procedure has
to continue. Similar discussion applies to the “right-top overlap” state. When the
project completion area locates “outside” the success cube, i.e. no overlap existing,
the project will be mostly evaluated as “Impossible”. If no significant changes are
available, the project is recommended to be canceled. The refinement strategy can be
further extended and applied to multi-dimension or hyper-cube of success criteria.

3.2 Project Control

You control a project to the extent that you manage to ensure the minimum of sur-
prises along the way. The best-controlled project is the one that best lives up to its
prediction [3]. The semi-quantitative controlling approach can provide a flexible way
to track and control project progress, and help the project manager observe whether
the project is under control. The project control approach contains three major steps:
(6) creating control metric tables; (7) tracking project at check-points; (8) identifying
problems and replanning (Fig. 2).

Step 6: creating control metric tables. Semi-quantitative simulation generates all
possible behaviors (behavior tree) for each scenario. The final project state cube is
calculated as the union of the value ranges predicted by the branches. The behavior
tree serves as the road map for the project. The distinction from the traditional meth-
ods is that it depicts the alternative routes. Fig. 5 is a simple behavior tree with five
branches. The transition points are indicated as landmarks “Φ” in behavior tree.

Once reaching a “Good” solution for project planning, the control metric table
should be created for each measurable variable based on its predictions of all behav-
iors. Table 3 is an example control table. The transition points and critical time points

338 H. Zhang, B. Kitchenham, and R. Jeffery

need to be identified from the behavior tree, and added to project control plan as the
check-points.

Step 7: tracking project at check-points. According the control plan, the perform-
ance indicators are measured and tracked at the check-points. The project can shift
between the branches, and its progress state can be identified with the corresponding
value ranges in control tables. If the progress is consistent with the estimated value
ranges, it indicates the project under control, then the extra branches (inconsistent
with actual project state) should be cut out, and the control table is updated with re-
fined value ranges. Correspondingly, the project final state is refined with the remain-
ing branches.

Step 8: identifying problems and replanning. When inconsistency is found against
any branch at check-points, it alerts that the project might be out of control. Problems
have to be identified and corrected, and replanning needs to be performed.

4 Illustrative Example

In this section, we present a simple application of the semi-quantitative planning and
control approach, and show how the project management benefits from this novel
approach. To avoid the excessive detail, we employ a simplified software process
model focusing on the staffing process, which is described in [12], and apply the
project success constraints in only two dimensions for demonstration.

4.1 Prototype Project

We select AHM’s EXAMPLE project as a prototype project for demonstration.
EXAMPLE is a middle-size project with 64 KDSI, and used COCOMO to calculate
the workforce level [8]. The main attributes of EXAMPLE project are summarized in
Table 1. As the originally planned, the project can be delivered on day 430.

Considering any contingency issues, such as leave or sickness, the initial project
team size is defined with [4 5] developers. The progress of EXAMPLE project pro-
ceeds as planned until a request for change (RFC) by marketing department on day
240. They report that a competitor plans to release a similar software product in the
near future, and argue that their own product must be released two months earlier than
original schedule to remain competitive. After one-week’s analysis and discussion
across the organization, the management approves the RFC with the condition that the
new total expenditure must be no more than 3000 man-days. The project manager is
responsible for making the corresponding changes to the project plan.

4.2 Planning Procedure

This is a typical project replanning scenario, the project manager tries to find a
“Good’ solution using the semi-quantitative planning approach.

Step 1. The project manager updates the project plan on day 245 (one week after
RFC). The changed project has to be completed two months (40 working days) earlier
than the original schedule, in other words, the current project closure targets at day
390. The original estimated budget of the project is 2150 man-days. The project

 Achieving Software Project Success: A Semi-quantitative Approach 339

success criteria are updated correspondingly. In Step 2, the experimental process
model [12] is chosen for the simulation.

Step 3. By examining the elements of the experimental model, we identify four
tunable elements: new workforce, productivity ratio, assimilation delay, and remain-
ing project size (Table 2). The value of “new workforce” indicates how many new
developers are introduced into the project. The available human resource is up to 12
developers for this project. The value constraints are further explained in [1].

It is noticeable that the first three elements are related to introducing more devel-
opers into the project. The fourth element, i.e. reducing remaining project size (func-
tionality), is not desired for the clients, so it is ranked at the bottom. Considering the
time for recruiting, the new staff can join the project team in three weeks, i.e. recruit-
ment delay for 15 days. Correspondingly, the project completion is refined as [260
390]. Because the values of the second and third elements are highly dependent on the
quality of the new staff, it is hard to refine the value ranges before the assimilation.
Therefore, the project manager plans to start the simulation by adding extra workforce
into the project without altering the uncertainty on the last two elements.

 Table 1. Attributes of EXAMPLE project Table 2. Project element table

Attributes Values
project size 64KDSI
duration 430days
initial team size [4 5]staff
maximum team size 16staff
average productivity 36DSI/man-day

Element time cost Constraint
new workforce [+/-] [+] [0 12] staff
productivity ratio [-] [-] [0.4 0.6]
assimilation delay

[+] [+]
[60 80]

days
remaining size [+] [+]

Iteration 1. We initially introduce [3 4] developers into the project to initiate the

simulation process. The project can finish on day [339 423], and the completion cube
is depicted in Fig. 4. Comparing the original completion time and project success
cube, this decision slightly improves the product release schedule (but only guaran-
teed by 7 days), and improves the cost performance. However, the delivery date is
still much behind the expected release date (day 390).

Iteration 2. One positive finding through Iteration 1 is that adding extra workforce
may shorten the project duration. To amplify this positive effect, we introduce [11 12]
developers. It generates 3 possible behaviors this time, which predict the project may
finish on day [309 386], a bit earlier than requested release date. However, the com-
pletion cube indicates that the project cost may increase significantly and reach much
higher than acceptable budget (Fig. 4). Although the financial performance looks
terrible, it further verifies the positive contribution of extra workforce to schedule.

Iteration 3. With respect to the impacts identified in Table 2, we need to add fewer
developers in this iteration to reduce the possible high expenditure caused in Iteration
2. We choose a modest number of developers, say [7 8] developers, for this simula-
tion. Five possible behaviors are generated (Fig. 5), and indicate the project may fin-
ish at day [320 396], before or after the new members of staff are fully assimilated.

Both schedule and cost are slightly over the requested success cube. This means
that the solution corresponds to the “right-top overlap” state in Fig. 3. Analyzing the
impacts of increasing the workforce across iterations, we find that reducing the

340 H. Zhang, B. Kitchenham, and R. Jeffery

days100 200 300 400

man-days

1000

2000

3000

project success box

O
riginal Com

pletion Tim
e

project [3 4] new developers

project [11 12] new developers

project [7 8] new developers

Fig. 4. Project completion cube through simulation

number of extra staff will incur a further delay of the project; and conversely, intro-
ducing more developers will result in higher cost, comparing with Iteration 3.

Step 5. After negotiating with the senior management and marketing department,
they reach the agreement to update the project plan with new time frame of [320 396]
days and budget of [1700 3068] man-days. Meanwhile, the management gives up the
last option (in Table 2) of sacrificing software functionality or quality. Given this
update of project success criteria, the project manager plans to recruit [7 8] developers
into the team with confidence that the projects will be completed successfully.

4.3 Controlling Procedure

Fig. 5 is the project behavior tree generated for this simplified case by Iteration 3. It
depicts five possible behaviors: three of them have one transition (t1 when new work-
force is introduced) during simulation, Behavior 5 ends exactly at the second transi-
tion point (assimilation ends at), only Behavior 3 passes two transitions (t1, t2). The
behaviors are distinguished at the variables’ trends (e.g. value going up or down).

Step 6. Based on the behavior tree, we develop the control metric table for each
measurable variable to track its changes at check-points. The most important check-
point is transition point t2 that indicates the end of assimilation. Table 3 is an example
control metric table for RSD (software development rate) and SC (completed size).

Step 7. When the project progresses to t2, the project state is compared to the con-
trolling tables. Because only Behavior 3 goes through the second transition point, if
we are aware of the end of assimilation and SC falls into the range of [44 64] KDSI,
we can predict the schedule might reach 396. Correspondingly, the behavior branch 1,
2, 4, and 5 can be cut out. On the other hand, if the project closes during the assimila-
tion, it may happen in the time period [323 340].

Step 8. One unexpected situation might be that the assimilation finishes, but the
project progresses to the outside of the range [44 64] KDSI. It means the project is out
of control. The project manager has to identify and correct the assignable problems
immediately. Replanning should be carried out to update the project end state.

 Achieving Software Project Success: A Semi-quantitative Approach 341

 Table 3. Control metric table for RSD/SC

RSD@t1 RSD@t2 (SC) duration
1 [123 179] [203 387] (-) [325 340]
2 [141 179] [203 387] (-) [325 340]

3 [141 179]
[277 403]
([44 64])

[320 396]

4 [141 179] [201 403] (-) [323 340]
5 [141 179] [277 403] (-) [323 340]

 Fig. 5. Behavior tree of Iteration 3

5 Discussion

5.1 Approach Capability

Multi-dimension Reasoning. In the EXAMPLE project (Section 5), we employ two
dimensions (project schedule and cost) to define the project success cube. The simpli-
fied scenario helps the understanding of our approach. However, in practice,
management may consider more factors simultaneously, and needs to determine the
tradeoffs between all of them for decision making. Semi-quantitative simulation pro-
vides this capability of reasoning alternative process behaviors in many dimensions.

Success Factors. In real software project, many success factors can be defined at the
planning stage, and can be reasoned by using the multi-dimension capability of semi-
quantitative simulation. We choose a simplified 2-D view of project success in exam-
ple. However, normally, a variety of stakeholders are involved in the project planning
process. Most of them, including the project manager, development team, project
clients, and senior management, may possess very different perspectives on the
expected project performance. For instance, the marketing department hopes to
release a new software product earlier than its competitors. On the other hand, the
development team estimates the required project duration based on their own experi-
ence. Therefore, both groups have to compromise with each other on the value ranges
in dimension(s) of project success cube, accepting that delivery is impossible for
developers before the lower value, and release is useless for clients after the higher
value.

“Good” Solutions. Our approach is to find one “Good” solution that guarantees the
project falls into the success cube. However, this solution is not a unique one fitting
the predefined project success, but one of the possible “Good” solutions. Different
iterations may produce slightly different solutions. Project managers have to identify
the tradeoff (solution) among the success factors required by clients or executives,
allowing for the resource available to the project. With regard to the definition of
project success, there is no difference (better or worse) among the all possible “Good”
solutions. Thus, the solution obtained through this approach can assist in the planning
and control process by offering both flexibility and contingency tolerance.

342 H. Zhang, B. Kitchenham, and R. Jeffery

5.2 Alternative Approaches

There are two broad categories of methods dealing with uncertainty: probabilistic and
non-probabilistic. Semi-quantitative simulation falls into the second one.

Statistical Probability. With reference to the definition of project success, a software
project will be evaluated as successful as long as it finishes at any point inside the
success cube. One purpose of our approach is to guarantee that the project plan leads
to the project success by allowing the definitions of success to include an element of
uncertainty. Using semi-quantitative simulation, we can allow for the existence of
many uncertain elements without needing to know their statistical distribution.

Monte Carlo Method and Sensitivity Analysis. Monte Carlo simulation and sensi-
tivity analysis are both popular methods for project planning. Although they take
many samples of the value range, unfortunately, they are still a finite set. Thus, they
cannot guarantee the all possibilities fall into their solution. This problem turns to be
more serious when more factors change simultaneously, which may result in missing
some important behaviors. Meanwhile, the cost of using them increases dramatically
with the combination of multiple dimensions in the possible variable space. However,
the cost of semi-quantitative simulation does not depend on the size of the variable
space. It is a function of the number of distinct qualitative behaviors predicted [11].

Another condition required for using Monte Carlo simulation is that we need to
know the value distribution of variable on the range. If such information is unavail-
able, some distribution has to be assumed anyway. In contrast, semi-quantitative
simulation can work without such assumption.

Fuzzy Logic. As another non-probabilistic method, Fuzzy logic describes the real
world system with fuzzy set, which is a fuzzy subset of the universe of discourse. It
applies a rough boundary to handle the uncertainty, and the mapping to fuzzy set is in
an arbitrary way, linear or nonlinear. In contrast, semi-quantitative modeling de-
scribes the system boundary with real numeric values, which maintains the precision
while coping with uncertainty. Each approach possesses its advantages and limita-
tions. The selection between them depends on user’s capability and requirements.

Semi-quantitative simulation performs reasoning by refinement: define a set of
possible solution, and shrink it by cutting out the illogical behaviors. This approach
guarantees integrity of the solution. In addition, semi-quantitative simulation produces
not only the final states of project, but all possible process behaviors (routes) with the
constraints of value ranges, which can be used for ongoing project control. This capa-
bility is unique to semi-quantitative modeling.

6 Conclusion

This paper has proposed a novel approach to project planning and control using semi-
quantitative simulation, which matches a contemporary definition of project success.
We also demonstrate how this approach works with a simplified example. The unique
features and advantages of our approach are also discussed.

 Achieving Software Project Success: A Semi-quantitative Approach 343

Semi-quantitative simulation is presented in this paper as a powerful technique for
planning and controlling software project with uncertainty. Moreover, it offers a pro-
ject manager the flexibility and confidence to cope with uncertainty and contingency
during the software development, and guarantee the integrity of final project states.
By contrast, the traditional approaches are only one-point sample of the set of solu-
tions in the success cube. The future research on this topic will consider:

− Developing a planning and control tool with integration of steps, and visualizing
project states through simulation;

− Automatically implementing iterative procedure and generating control table.

References

1. Zhang, H. and B. Kitchenham, Semi-Quantitative Simulation Modeling of Software Engi-
neering Process, in Software Process Workshop/International Workshop on Software
Process Simulation and Modeling. 2006, Springer: Shanghai.

2. Kerzner, H., Using the Project Management Maturity Model: Strategic Planning for Pro-
ject Management 2nd ed. 2005: John Wiley & Sons.

3. DeMarco, T., Controlling Software Projects: Management, Measurement & Estimation.
1982, New York: Yourdon Press.

4. Kerzner, H., Project Management: A Systems Approach to Planning, Scheduling, and
Controlling. 9th ed. 2006: John Wiley & Sons.

5. Rehessar, H., Project Management Success Factors. 1996, University of New South
Wales.

6. Clark, T.A., Project Management for Planners: A Practical Guide. 2002: Planners Press,
American Planning Association.

7. A Guide to the Project Management Body of Knowledge. 2004, Project Management
Institute.

8. Abdel-Hamid, T.K. and S.E. Madnick, Software Project Dynamics: An Integrated Ap-
proach. 1991, Englewood Cliffs, N.J.: Prentice Hall.

9. Kellner, M.I., R.J. Madachy, and D.M. Raffo, Software Process Simulation Modeling:
Why? What? How? Journal of Systems and Software, 1999. 46(2/3).

10. QSIM, UT Qualitative Reasoning Software. http://www.cs.utexas.edu/users/qr/QR-
software.html.

11. Kuipers, B., Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge.
1994: MIT Press.

12. Zhang, H., et al., Qualitative Simulation Model for Software Engineering Process, in Aus-
tralian Software Engineering Conference. 2006: Sydney.

Author Index

Al-Emran, Ahmed 246
Amescua, Antonio 1

Babar, Muhammad Ali 283
Baik, Jongmoon 73
Birkhölzer, Thomas 272
Boehm, Barry 37, 61
Brito, Mario 96

Che, Meiru 233
Chen, Weibing 208
Choi, Ho-Jin 73
Clarke, Lori A. 109
Conradi, Reidar 208

Dai, Jian 221
Deissenboeck, Florian 259
Demirors, Onur 195
Dickmann, Christoph 272
Du, Shuanzhu 147

Ferguson, Robert 307
Fietz, Wolfgang 272

Garćıa, Javier 1
Gou, Lang 233
Günther, Christian W. 169

He, Mei 134
Hou, Lishan 121
Huo, Ming 49

Jeffery, Ross 49, 320, 332
Ji, Junzhong 208
Jiang, Nan 233
Ju, Dehua 25

Kindler, Ekkart 169
Kitchenham, Barbara 320, 332
Klein, Harald 272
Koolmanojwong, Supannika 61

Lam, Alexander 61
Li, Jingyue 208
Li, Juan 121

Li, Mingshu 37, 84, 121, 134, 147,
221,233

Li, Nao 147
Liu, Chunnian 208
Liu, Dapeng 221

Ma, Jianqiang 208
Madachy, Ray 159
May, John 96
Medina-Domı́nguez, Fuensanta 1
Meyer, Ludger 272
Münch, Jürgen 12, 182
Murdoch, John 295

Nisar, M.Wasif 221
Nonaka, Makoto 283

Ocampo, Alexis 12
Osterweil, Leon J. 109

Pfahl, Dietmar 246
Phongpaibul, Monvarath 61
Pizka, Markus 259
Powell, Antony 295

Raffo, David M. 307
Ruan, Li 84, 221
Rubin, Vladimir 169
Ruhe, Günther 246

Sanchez-Segura, Maria-Isabel 1
Schäfer, Wilhelm 169
Setamanit, Siri-on 307
Sethanandha, Bhuricha Deen 307
Shen, Beijun 25
Shin, Hyunil 73
Simidchieva, Borislava I. 109
Soto, Mart́ın 182
Staples, Mark 49, 283

Tran, Tu Tak 49
Tudor, Nick 295
Turetken, Oktay 195

van der Aalst, Wil M.P. 169
van Dongen, Boudewijn F. 169
Vaupel, Jürgen 272

346 Author Index

Wang, Qing 37, 84, 121, 134, 147,
221, 233

Wang, Yongji 221

Xiao, Junchao 84, 147, 221
Xie, Lizi 84, 221

Yang, Da 37
Yang, Guowei 121
Yang, Qiusong 121

Yang, Ye 37, 134
Yang, Yun 121, 221, 233

Zeng, Haitao 221
Zhai, Jian 121
Zhang, He 320, 332
Zhang, Lei 84, 221
Zhang, Ronghui 233
Zhang, Shen 221
Zhu, Liming 49, 283

	Title page
	Preface
	Organization
	Table of Contents
	Extending Microsoft Team Foundation ServerArchitecture to Support Collaborative Product Patterns
	Introduction
	PIBOK-PB Architecture Description
	Extending Microsoft VSTS to Support PIBOK-PB Architecture
	Related Works
	Conclusions and Future Trends
	References

	The REMIS Approach for Rationale-Driven ProcessModel Evolution
	Introduction
	A Retrospective of Rationale-Driven Approaches and Tools
	Software Engineering and Rationale
	Process Modeling and Rationale

	Characterization of Rationale Tool Support
	Process Rationale Concepts and Prototype
	Concepts
	Prototype and Technical Infrastructure

	Experience and Lessons Learned
	Summary and Outlook
	References

	On the Measurement of Agility in Software Process
	Introduction and Motivation
	Related Works
	Measurement Approach Based on GQM and Balanced Scorecard
	GQM and Balanced Scorecard
	New Measurement Approach

	Representative Agility Metrics of Software Process
	Identification of Representative Agility Metrics
	Formal Definition of Representative Agility Metrics

	Preliminary Experiments
	Planning of the Experiments
	Results of the Experiments
	Findings and Discussion

	Conclusion and Future Work
	References

	Coping with the Cone of Uncertainty: An EmpiricalStudy of the SAIV Process Model
	Introduction
	Related Work
	Backgrounds
	Empirical Analysis of the SAIV Development Process
	Estimate Cost and Its Uncertainty
	Create the Opportunities to Handle Uncertainty
	Enable Flexible Process to Cope with Uncertainty
	Risk Driven Strategies for Uncertainty Mitigation
	The Performance of SAIV Process

	Conclusions
	References

	Effects of Architecture and Technical DevelopmentProcess on Micro-process
	Introduction
	Related Work
	Effects of Architecture and Technical Development Process on Micro-process
	A Framework of Factors That Affect Micro-process
	Software Architecture Factor
	Technical Development Process Factor

	Case Study
	Project Selection
	Data Source and Techniques
	Project A: The Finance Project
	Project B: The XML Project

	Discussion
	Conclusion and Future Work
	References

	Comparative Experiences with Electronic Process GuideGenerator Tools
	Introduction
	Background and Overview
	Process Guideline Overview
	Electronic Process Guide (EPG) Generator Tool Overview

	EPG Generator Tool Comparison
	Representation of Process Elements (Roles, Tasks, Artifacts, and Tools/Guidance)
	Representation of Relationship Between the Process Elements
	Representation of a Process
	Support Reusable of Content in the Process
	Dynamic Process Configuration
	Integration to the Other Software Engineering Tools
	Comparative Usage Statistics

	Future Challenges for Software Process Modeling Tools
	Conclusion
	References

	Jasmine: A PSP Supporting Tool
	Introduction
	Background
	Sensor-Based Automated Data Collection
	EPG and ER

	High-Level Architecture and Main Features of Jasmine
	PPMT
	PSPG/ER
	Interaction Between PPMT and PSPG/ER

	Comparative Analysis of Related Tools
	Conclusion and Future Work
	References

	A Tool to Create Process-Agents for OEC-SPM fromHistorical Project Data
	Introduction
	The Process of OEC-SPM and the Structure of PA
	The Definition of HPD
	The Process of Creating PAs in the Tool
	The Application of the Tool
	Generating HPD from the Database of SoftPM
	Creating PAs from the HPD

	The Result of the Tool
	References

	Safety Critical Software Process Improvement byMulti-objective Optimization Algorithms
	Introduction
	The Process Model
	Meta-heuristics for Decision Support
	Using the Decision Support System
	Case Study 1 - Optimization of the Software Requirements Specification Phase
	Case Study 2 - Optimization of the Software Architecture Design Phase

	Discussion
	References

	Representing Process Variation with a Process Family
	Introduction
	Related Work
	Approach
	Case Study
	Results
	Discussion
	References

	An Algebraic Approach for Managing Inconsistencies inSoftware Processes
	Introduction
	Visualizing Software Processes with TRISO/ML
	Mapping TRISO/ML onto Polyadic -Calculus
	Polyadic ϕ -Calculus
	Mapping Rules

	Detecting Inconsistencies with Polyadic ϕ -Calculus
	Domain-Level Inconsistencies
	Environment-Level Inconsistencies

	Case Study
	Related Work
	Conclusion

	Cost Estimation and Analysis for GovernmentContract Pricing in China
	Introduction
	Related Work
	Problem Description
	Overview of COGOMO
	Modeling the COGOMO
	Establishing Government Knowledge Base
	Modeling Effort Estimation
	Analyzing Total Cost

	Case Study of COGOMO
	Conclusion and Future Works
	References

	A Multilateral Negotiation Method for SoftwareProcess Modeling
	Introduction
	Related Work
	Multilateral Negotiation Model MNM-PA
	Multilateral Negotiation Protocol
	Multilateral Negotiation Strategies

	An Example
	Conclusions and Further Work
	References

	Distributed Global DevelopmentParametric Cost Modeling
	Introduction and Background
	Model Overview
	Work Allocation by Phase vs. Module
	Different Working Calendars
	Effort Multiplier Variation by Phase
	Algorithm Overview
	Project Estimation Example

	Industry Collaboration
	Conclusions and Future Work
	References

	Process Mining Framework forSoftware Processes
	Introduction
	Related Work
	Process Mining for Software Engineering Environments
	Incremental Workflow Mining Approach
	Input Information

	Process Mining Algorithms and Tool Support
	Abstraction on the Log Level
	Control-Flow Mining
	Mining Other Perspectives
	Process Analysis and Verification
	ProM and ProMimport Tools

	Evaluation and Applications
	Conclusion

	Focused Identification of Process Model Changes
	Introduction
	The Process Model Comparison Problem
	Pattern-Matching Based Change Identification
	A Normalized Representation for Process Models and Their Comparisons
	Graphical Comparison Patterns
	Example 1: Additions and Deletions
	Example 2: Changes in Attribute Values
	Example 3: Impact of Changes on Tool Usage

	Implementation and Validation
	Related Work
	Conclusions and Future Work
	References

	An Approach for Decentralized Process Modeling
	Introduction
	Related Work
	The Plural Method
	Context Definition
	Description and Conflict Resolution
	Integration and Change

	Case Studies and Lessons Learned
	Conclusion
	References

	A Survey of Software Development with Open SourceComponents in Chinese Software Industry
	Introduction
	Background
	Concepts Used in This Study
	State-of-the-Art
	State-of-the-Practice of OSS-Based Development in China

	Research Approach
	Research Questions
	Research Design

	Results and Discussion of Research Questions
	Background Information
	Investigating RQ1: How OSS Components Were Selected
	Investigating RQ2: How the Licensing Terms Were Complied
	Investigating RQ3: How the Maintenance Was Performed

	General Discussion
	Conclusions and Future Work
	References

	Empirical Study on Benchmarking SoftwareDevelopment Tasks
	Introduction
	Data Collection and Analysis Tool
	Data Collection
	Analysis Tool

	Data Analysis and Empirical Results
	Hypothesis 1: Can the Relatively Efficient Tasks Be Identified to Establish the Task Performance Benchmark Under Multivariate and VRS Constraints?
	Hypothesis 2: Can Different Reference Sets for Each Relatively Inefficient Task Be Established Under Multivariate and VRS Constraints?

	Sensitivity Analysis
	Conclusions and Future Work

	An Empirical Study on Establishing QuantitativeManagement Model for Testing Process
	Introduction
	Empirical Method
	Identify P-Objs and Construct Data Samples
	Establish P-BL of Identified P-Objs
	Analyze Correlation Between P-Objs

	Establish Quantitative Management Model for Testing Process
	Data Sample
	P-BL of Identified P-Objs
	Correlation Between P-Objs

	Manage Testing Process Quantitatively
	Initial Estimation
	Tracking and Re-estimation

	Related Work
	Conclusions and Future Work
	References

	DynaReP: A Discrete Event Simulation Model forRe-planning of Software Releases
	Introduction
	Related Work and Motivation
	The DynaReP Model
	Model Capabilities
	Model Heuristic, Parameters, Variables, Constraints and Controllers
	Model Structure and Description

	Hypothetical Case Study Example for Re-planning Scenarios
	Baseline Scenario: Initial Planning
	Re-planning Scenario 1: Feature Inclusion
	Re-planning Scenario 2: Underestimated Work Volume
	Re-planning Scenario 3: Developer Unavailability

	Discussion
	Conclusions and Future Work
	References

	The Economic Impact ofSoftware Process Variations
	Software Process Economics
	Requirements / Situation
	Mainframe Software Development
	The CAP Isolation Mechanism
	Research Question

	The Value of Isolated Testing
	Approach, Contribution and Outline
	A Probabilistic Process Analysis Model
	Probabilities and Risks
	Operationalization of the Model
	Total Project Effort and Duration

	Application of the Analysis Model to Isolated Testing
	Reference Process
	Calibration
	Parameterization
	CAP and Non-CAP Process Models
	Relative Project Effort
	Estimation of the Conflict Probability

	Results and Discussion
	Related Work
	Conclusions and Future Work

	Deriving a Valid Process Simulation from Real WorldExperiences
	Introduction
	Background
	Deriving a Validated Model for the Simulation
	Methodology
	Model Structure Based on Process Knowledge
	Model Parameter Estimation Based on Expert Knowledge
	Next Steps

	Customization
	Mapping of Normalized Variables
	Spreadsheet-Based Configuration

	Discussion
	Conclusion
	References

	Project Delay Variability Simulationin Software Product Line Development
	Introduction
	Proposed Simulation Model
	Primary Factors of the Simulation Model
	Determining Adaptive Rework
	Model Assumptions

	Simulation Results
	Project Data and Parameters
	Result 1: Detail View of Project Delay and Adaptive Rework
	Result 2: Variability of Project Delay

	Model Evaluation
	Discussion and Related Works
	Calibration for Practical Application
	Limitations of the Model
	Effort Estimation and Simulation in SPL Development

	Conclusions

	Modeling Risk-Benefit Assumptions in TechnologySubstitution
	Introduction
	A Case Study of Technology Substitution
	Step 1 – Model Boundary
	Step 2 – Model Objectives and Assumptions
	Step 3 – Model Construction
	Step 4 – Data Gathering
	Step 5 – Model Runs, Sensitivity Analysis and Validation
	Step 6 – Model Review

	Principles of Technology Substitution
	Assessment of Technology Substitution
	Strategies for Modeling Technology Substitution
	Conclusions
	References

	Evaluating the Impact of the QuARS RequirementsAnalysis Tool Using Simulation
	Introduction
	Background
	Process Simulation Models (PSMs)
	The QuARS: Quality Analyser for Requirements Specification

	GPSM-Based Evaluation Approach
	The IEEE 12207 Model
	QuARS Assumptions

	Business Implications of QuARS
	AS-IS Baseline Model Results
	Scenario 1: Applying QuARS in V&V Mode at Different Phases
	Scenario 2: Applying QuARS in IV&V Mode at Different Phases
	Financial Analysis

	Conclusion
	References

	A Framework for Adopting Software ProcessSimulation in CMMI Organizations
	Introduction
	Background and Motivation
	Process Simulation Modeling
	CMMI

	Mapping Framework
	Overview
	Initiating at ML1
	Transitioning from ML1 to ML2
	Transitioning from ML2 to ML3
	Transitioning from ML3 to ML4
	Transitioning from ML4 to ML5

	Discussion
	Conclusion
	References

	Achieving Software Project Success: A Semi-quantitativeApproach
	Introduction
	Motivation and Paradigm
	Project Success Definition
	Software Project Planning and Control
	Software Process Simulation Modeling
	Semi-quantitative Simulation

	Managing Software Project Semi-quantitatively
	Project Planning
	Project Control

	Illustrative Example
	Prototype Project
	Planning Procedure
	Controlling Procedure

	Discussion
	Approach Capability
	Alternative Approaches

	Conclusion
	References

	Author Index

